We theoretically and numerically demonstrate an actively tunable slow light in a hybrid metal-graphene metamaterial in the terahertz (THz) regime. In the unit cell, the near field coupling between the metallic elements including the bright cut wire resonator and the dark double split-ring resonator gives rises to a pronounced transmission peak. By positioning a monolayer graphene under the dark mode resonator, an active modulation of the near field coupling is achieved via shifting the Fermi level of graphene. The physical origin can be attributed to the variation in the damping rate of the dark mode resonator arising from the conductive effect of graphene. Accompanied with the actively tunable near filed coupling effect is the dynamically controllable phase dispersion, allowing for the highly tunable slow light effect. This work offers an alternative way to design compact slow light devices in the THz regime for future optical signal processing applications.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Tingting Liu. Show all posts
Showing posts with label Tingting Liu. Show all posts
Wednesday, June 27, 2018
Abstract-Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial
Thursday, March 29, 2018
Abstract-Active Manipulation of Electromagnetically Induced Transparency in a Terahertz Hybrid Metamaterial
The metamaterial analogue of electromagnetically induced transparency (EIT) in terahertz (THz) regime holds fascinating prospects for filling the THz gap in various functional devices. In this paper, we propose a novel hybrid metamaterial to actively manipulate the resonance strength of EIT effect. By integrating a monolayer graphene into a THz metal metamaterial, an on-to-off modulation of the EIT transparency window is achieved under different Fermi levels of graphene. According to the classical two-particle model and the distributions of the electric field and surface charge density, the physical mechanism is attributable to the recombination effect of conductive graphene. This work reveals a novel manipulation mechanism of EIT resonance in the hybrid metamaterial and offers a new perspective towards designing THz functional devices.
Wednesday, December 20, 2017
Abstract-Dynamically tunable metamaterial analogue of electromagnetically induced transparency with graphene in the terahertz regime
A novel mechanism to realize dynamically tunable electromagnetically induced transparency (EIT) analogue in the terahertz (THz) regime is proposed. By putting the electrically controllable monolayer graphene under the dark resonator, the amplitude of the EIT resonance in the metal-based metamaterial can be modulated substantially via altering the Fermi level of graphene. The amplitude modulation can be attributed to the change in the damping rate of the dark mode caused by the recombination effect of the conductive graphene. This work provides an alternative way to achieve tunable slow light effect and has potential applications in THz wireless communications.
Sunday, May 28, 2017
Abstract-Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials
(Submitted on 25 May 2017)
https://arxiv.org/abs/1705.09082Metamaterial analogues of electromagnetically induced transparency (EIT) have been intensively studied and widely employed for slow light and enhanced nonlinear effects. In particular, the active modulation of the EIT analogue and well-controlled group delay in metamaterials have shown great prospects in optical communication networks. Previous studies have focused on the optical control of the EIT analogue by integrating the photoactive materials into the unit cell, however, the response time is limited by the recovery time of the excited carriers in these bulk materials. Graphene has recently emerged as an exceptional optoelectronic material. It shows an ultrafast relaxation time on the order of picosecond and its conductivity can be tuned via manipulating the Fermi energy. Here we integrate a monolayer graphene into metal-based terahertz (THz) metamaterials, and realize a complete modulation in the resonance strength of the EIT analogue at the accessible Fermi energy. The physical mechanism lies in the active tuning the damping rate of the dark mode resonator through the recombination effect of the conductive graphene. Note that the monolayer morphology in our work is easier to fabricate and manipulate than isolated fashion. This work presents a novel modulation strategy of the EIT analogue in the hybrid metamaterials, and pave the way towards designing very compact slow light devices to meet future demand of ultrafast optical signal processing.
Subscribe to:
Posts (Atom)