Showing posts with label Hiroyuki Nojiri. Show all posts
Showing posts with label Hiroyuki Nojiri. Show all posts

Thursday, December 22, 2016

Abstract-Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields


G. Timothy Noe, Ikufumi Katayama, Fumiya Katsutani, James J. Allred, Jeffrey A. Horowitz, David M. Sullivan, Qi Zhang, Fumiya Sekiguchi, Gary L. Woods, Matthias C. Hoffmann, Hiroyuki Nojiri, Jun Takeda, and Junichiro Kono

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-26-30328

We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.
© 2016 Optical Society of America
Full Article  |  PDF Article

Wednesday, May 25, 2016

New Tabletop Instrument Tests Electron Mobility for Next Generation Electronics



From the Journal: 
Tabletop terahertz CR spectrometer
The table-top sized terahertz cyclotron resonance spectrometer
CREDIT: S. Hammersley, The University of Manchester

WASHINGTON, D.C., May 24, 2016 -- The National High Magnetic Field Laboratory, with facilities in Florida and New Mexico, offers scientists access to enormous machines that create record-setting magnetic fields. The strong magnetic fields help researchers probe the fundamental structure of materials to better understand and manipulate their properties. Yet large-scale facilities like the MagLab are scarce, and scientists must compete with others for valuable time on the machines.
Now researchers from the United Kingdom, in collaboration with industry partners from Germany, have built a tabletop instrument that can perform measurements that were only previously possible at large national magnet labs. The measurements will help in the development of next generation electronic devices employing 2-D materials, said Ben Spencer, a post-doctoral research associate working in Darren Graham’s group at the University of Manchester’s Photon Science Institute, who helped develop the new instrument.
The researchers describe their work in a paper in the journal Applied Physics Letters, from AIP Publishing.
Since the 1950s, experiments conducted with magnetic fields have played a pivotal role in the development of semiconductors devices -- like transistors and light-emitting diodes -- that have changed the world.
One magnetic field technique is called cyclotron resonance. In a magnetic field, the charged particles in a material start to move in circles around the magnetic field lines. The orbiting particles interact with light differently depending on properties like their mass, concentration, and on how easily they move through the material. By shining light on the material in the magnetic field and recording what frequency and how much light is absorbed, scientists can learn important information about how easily charged particles move, a critical property in electronic devices.
One of the main obstacles to wide-spread use of cyclotron resonance is that some materials require an extremely high magnetic field to get the charged particles to move fast enough to interact with the light.
Recently researchers created a small, high-powered magnet that can generate fields of around 30 Tesla, about 600,000 times stronger than the Earth’s magnetic field and 20 times stronger than the MRI scanners typically used in hospitals.
The new magnet is compact enough for a tabletop machine, yet the magnet can only generate a field in short pulses that each last for a fleeting one-hundredth of a second.
“The challenge in doing cyclotron resonance with these pulsed magnets is being able to record your data within the brief time period that the magnet is on,” Spencer said. “The breakthrough we have made is in the measurement technique.”
Magnetic coil
The magnetic coil at the heart of the system was developed by Prof. Hiroyuki Nojiri at the Institute of Materials Research, Tohoku University (Japan). It produces a pulsed magnetic field of up to 30 Tesla
CREDIT: S. Hammersley, The University of Manchester
Spencer and his colleagues used an approach called an asynchronous optical sampling technique to increase the number of measurements during one pulse to around 100. Previous experiments with a similar magnet system were limited to four measurements per pulse.
The team worked with researchers from Laser Quantum, a laser manufacturer, to incorporate ultrafast lasers into the new instrument. The “Taccor” lasers they used run at repetition rates of 1 billion cycles per second, more than 10 times higher than the typical repetition rates for ultrafast laser systems, Spencer said. The fast laser allowed data acquisition times on the order of one ten-thousandth of a second, which meant up to a hundred measurements could be taken during the transient magnet pulse.
“It is this leap forward that will now enable routine cyclotron resonance measurements on a tabletop in a laboratory environment,” Spencer said.
The team tested their system by measuring the properties of electrons at the interface of the two semiconductors AlGaN and GaN. Such interfaces could form an important part of new, energy-saving transistors.
“This work is feeding into a programme of work at Cambridge University on developing AlGaN/GaN-based high electron mobility transistors. These promise much lower power consumption than current devices, which will ultimately lead to energy savings in a wide range of consumer electronic devices. We are also starting to investigate a range of other two-dimensional materials using this instrument, including the new wonder 2-D material graphene,” Graham said.
Ultimately, the team hopes their new instrument could facilitate rapid progress in many areas of semiconductor device development. The system can be easily moved to different universities, and it makes it easy to think of a measurement, and simply perform it the next day, without having to apply for time at a national magnet facility, the researchers say.
“We’re sure that when people realise that we can do such measurements in the lab they will be lining up to use our instrument. We’ve already been contacted by several groups interested in having measurements made on their samples,” Graham said.
ASOPS setup
The high-speed ASOPS setup including the two turn-key 1 GHz Taccor lasers from Laser Quantum GmbH.
CREDIT: Laser Quantum GmbH

Funding: This work was supported by the United Kingdom’s Engineering and Physical Sciences Research Council.
###
For More Information:
AIP Media Line
media@aip.org
301-209-3090
Article title: 
Authors: 
B. F. Spencer, W. F. Smith, M. T. Hibberd, P. Dawson, M. Beck, A. Bartels, I. Guiney, C. J. Humphreys and D. M. Graham
Author affiliations: 
University of Manchester, Laser Quantum GmbH, and the University of Cambridge

Friday, August 29, 2014

Abstract-Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet



G. Timothy Noe, II, Qi Zhang, Joseph Lee, Eiji Kato, Gary L. Woods, Hiroyuki Nojiri, and Junichiro Kono  »View Author Affiliations

Applied Optics, Vol. 53, Issue 26, pp. 5850-5855 (2014)
http://dx.doi.org/10.1364/AO.53.005850

We have performed terahertz time-domain magnetospectroscopy by combining a rapid scanning terahertz time-domain spectrometer based on the electronically controlled optical sampling method with a table-top minicoil pulsed magnet capable of producing magnetic fields up to 30 T. We demonstrate the capability of this system by measuring coherent cyclotron resonance oscillations in a high-mobility two-dimensional electron gas in GaAs and interference-induced terahertz transmittance modifications in a magnetoplasma in lightly doped n-InSb.
© 2014 Optical Society of America

Tuesday, August 5, 2014

Abstract-Rapid Scanning Terahertz Time-Domain Magnetospectroscopy with a Table-Top Repetitive Pulsed Magnet


  • G. Noe, Qi Zhang, Joseph Lee, Eiji Kato, Gary Woods, Hiroyuki Nojiri, and Junichiro Kono
  • received 07/10/2014; accepted 08/02/2014; posted 08/04/2014; Doc. ID 216741
  • http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=216741
  • Abstract: We have performed terahertz time-domain magnetospectroscopy by combining a rapid scanning terahertz time-domain spectrometer based on the electronically coupled optical sampling method with a table-top mini-coil pulsed magnet capable of producing magnetic fields up to 30~T. We demonstrate the capability of this system by measuring coherent cyclotron resonance oscillations in a high-mobility two-dimensional electron gas in GaAs and interference-induced terahertz transmittance modifications in a magnetoplasma in lightly doped $n$-InSb.

Tuesday, January 7, 2014

RAMBO a small but powerful magnet


Mike Williams
http://news.rice.edu/2014/01/06/rambo-a-small-but-powerful-magnet/

Rice University system allows high-magnetic-field experiments on a tabletop 

Rice University scientists have pioneered a tabletop magnetic pulse generator that does the work of a room-sized machine – and more.
Magnetic coil
A palm-sized coil is the heart of RAMBO, a Rice-built tabletop system to expose experiments to high magnetic fields. The coil developed by Hiroyuki Nojiri at Tohoku University in Japan provides a pulsed field of up to 30 tesla and allows for the collection of data at close range. Photo by Jeff Fitlow
The device dubbed “RAMBO” – short for Rice Advanced Magnet with Broadband Optics – will allow researchers who visit the university to run spectroscopy-based experiments on materials in pulsed magnetic fields of up to 30 tesla. (A high-resolution magnetic resonance imaging system is about 10 tesla in strength.)
The Rice lab of physicist Junichiro Kono created RAMBO in collaboration with Hiroyuki Nojiri at the Institute for Materials Research at Tohoku University in Sendai, Japan. Details appeared online recently in the American Institute of Physics journal Review of Scientific Instruments.
The advantages of such a small machine are many, said Timothy Noe, a postdoctoral research associate in Kono’s group and lead author of the paper. Aside from its size and powerful performance, RAMBO has windows that allow researchers to directly send a laser beam to the sample and collect data at close range.
“We can literally see the sample inside the magnet,” Kono said. “We have direct optical access, whereas if you go to a national high magnetic field facility, you have a monster magnet, and you can only access the sample through a very long optical fiber. You cannot do any nonlinear or ultrafast optical spectroscopy.
“RAMBO finally gives us the ability to combine ultrastrong magnetic fields and very short and intense optical pulses. It’s a combination of two extreme conditions.”
Team photo
Members of the Kono Lab at Rice developed RAMBO to allow tabletop experiments with magnetic fields that once took a room-sized device to carry out. From left: Tim Noe, Professor Junichiro Kono, Trevor Smith and Qi Zhang. Photo by Jeff Fitlow
The device’s unique configuration allows for the best access ever in a powerful magnetic field generator meant for scientific experimentation. Researchers can collect real-time, high-resolution data in a system that couples high magnetic fields and low temperatures with direct optical access to the magnet’s core, Kono said.
In addition, the unit can run a new experiment in a 30-tesla field every 10 minutes (or less for smaller peak fields), as opposed to waiting the hours often required for field generators to cool down after each experiment at large laboratories.
The device has already paid dividends for Kono’s group, which studies superfluorescence by hitting materials with femtosecond laser pulses to trigger quantum effects. RAMBO allows the laser pulse, the magnetic field pulse and the spectrometer to work in sync.
RAMBO is possible, he said, because of Nojiri’s development of a small and light mini-coil magnet. A little bigger than a spool of thread, the magnet allows Rice researchers to perform on campus many of the experiments they once carried out at theNational High Magnetic Field Laboratory at Florida State University or at Los Alamos National Laboratory.
The Florida State facility has produced continuous magnetic fields of 45 tesla; Los Alamos has produced pulses over 100 tesla.
“I would say we’ve been able to do 80 percent of the experiments here that we used to have to do elsewhere,” Kono said. “And that’s not all. There are things that only we can do here. This is a unique system that doesn’t exist anywhere else in the world.
RAMBO
RAMBO, the Rice Advanced Magnet with Broadband Optics, is a powerful magnetic pulse generator that allows scientists to test materials in high magnetic fields. Photo by Jeff Fitlow
“High magnetic fields have been around for many years. Ultrafast spectroscopy has been around for many years. But this is the first combination of the two,” he said.
Kono’s group built the system to analyze very small, if not microscopic, samples. A sample plate sits on a long sapphire cylinder that passes through the coil’s container and juts through one end of the magnet to place it directly in the center of the magnetic field.
The cylinder provides one direct window to the experiment; a port on the other side of the container looks directly down upon the sample. The coil is bathed in liquid nitrogen to keep it cool at around 80 kelvins (-315 degrees Fahrenheit). The sample temperature can be independently controlled from about 10 K to room temperature by adjusting the flow of liquid helium to the sapphire cylinder.
Kono said he expects RAMBO to make Rice one center of an international network of researchers working on modern materials. “This opens up all kinds of possibilities,” he said. “Scientists working in different areas will come up with new ideas just by knowing such a thing is possible.”
He said the team has already collaborated with Jean Léotin, a co-author of the paper and a professor at the Laboratoire National des Champs Magnétiques Intenses in Toulouse, France, to perform one of the first time-domain terahertz spectroscopy experiments in high magnetic fields.
Co-authors include Joseph Lee, a student at Clements High School, Sugar Land, Texas, who works in Kono’s lab, and Gary Woods, a professor in the practice of computer technology and electrical and computer engineering.
The National Science Foundation, the Department of Energy and the Robert A. Welch Foundation supported the research.
- See more at: http://news.rice.edu/2014/01/06/rambo-a-small-but-powerful-magnet/#sthash.JIUcCT3C.dpuf