The fast modulation of lasers is a fundamental requirement for applications in optical communications, high-resolution spectroscopy and metrology. In the terahertz-frequency range, the quantum-cascade laser (QCL) is a high-power source with the potential for high-frequency modulation. However, conventional electronic modulation is limited fundamentally by parasitic device impedance, and so alternative physical processes must be exploited to modulate the QCL gain on ultrafast timescales. Here, we demonstrate an alternative mechanism to modulate the emission from a QCL device, whereby optically-generated acoustic phonon pulses are used to perturb the QCL bandstructure, enabling fast amplitude modulation that can be controlled using the QCL drive current or strain pulse amplitude, to a maximum modulation depth of 6% in our experiment. We show that this modulation can be explained using perturbation theory analysis. While the modulation rise-time was limited to ~800 ps by our measurement system, theoretical considerations suggest considerably faster modulation could be possible.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Alexander Valavanis. Show all posts
Showing posts with label Alexander Valavanis. Show all posts
Saturday, February 15, 2020
Abstract-High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses
Wednesday, May 9, 2018
Abstract-Gas spectroscopy with integrated frequency monitoring through self-mixing in a terahertz quantum-cascade laser
Rabi Chhantyal-Pun, Alexander Valavanis, James T. Keeley, Pierluigi Rubino, Iman Kundu, Yingjun Han, Paul Dean, Lianhe Li, A. Giles Davies, and Edmund H. Linfield
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-10-2225
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0–800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10−4 cm−1 is resolvable.
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Saturday, July 1, 2017
Abstract-Infinite-Period Density-Matrix Model for Terahertz-Frequency Quantum Cascade Lasers
Aleksandar Demić, Andrew Grier. Zoran Ikonić, Alexander Valavanis, Craig A. Evans, Reshma Mohandas, Lianhe Li,
http://ieeexplore.ieee.org/document/7956268/
In this work, we present a density-matrix model, which considers an infinite quantum cascade laser (QCL) and models transport via a nearest neighbor approximation. We will discuss derivation of output parameters of the model in detail and show the direct mathematical link to the semiclassical rate equation approach. This model can be extended to an arbitrary number of states in the QCL period, without a priori specification of upper and lower lasing level. Application of the model to various QCL structures is possible, including bound-to-continuum structures, which typically employ a large number of states per period. The model has been applied to a 2-THz bound-to-continuum QCL, and a very good agreement with measured
Sunday, June 18, 2017
Abstract-Frequency Tunability and Spectral Control in Terahertz Quantum Cascade Lasers With Phase-Adjusted Finite-Defect-Site Photonic Lattices
http://ieeexplore.ieee.org/document/7948783/
We report on the effect of finite-defect-site photonic lattices (PLs) on the spectral emission of terahertz frequency quantum cascade lasers, both theoretically and experimentally. A central π-phase adjusted defect incorporated in the PL is shown to favor emission selectively within the photonic bandgap. The effect of the duty cycle and the longitudinal position of such PLs is investigated, and used to demonstrate three distinct spectral behaviors: single-mode emission from devices in the range 2.2−5 THz, with a side-mode suppression ratio of 40 dB and exhibiting continuous frequency tuning over >8 GHz; discrete tuning between two engineered emission modes separated by ∼40 GHz; and multiple-mode emission with an engineered frequency spacing between emission lines.
We report on the effect of finite-defect-site photonic lattices (PLs) on the spectral emission of terahertz frequency quantum cascade lasers, both theoretically and experimentally. A central π-phase adjusted defect incorporated in the PL is shown to favor emission selectively within the photonic bandgap. The effect of the duty cycle and the longitudinal position of such PLs is investigated, and used to demonstrate three distinct spectral behaviors: single-mode emission from devices in the range 2.2−5 THz, with a side-mode suppression ratio of 40 dB and exhibiting continuous frequency tuning over >8 GHz; discrete tuning between two engineered emission modes separated by ∼40 GHz; and multiple-mode emission with an engineered frequency spacing between emission lines.
Wednesday, April 26, 2017
Abstract-Multi-spectral terahertz sensing: proposal for a coupled-cavity quantum cascade laser based optical feedback interferometer
Xiaoqiong Qi, Gary Agnew, Iman Kundu, Thomas Taimre, Yah Leng Lim, Karl Bertling, Paul Dean, Andrew Grier, Alexander Valavanis, Edmund H. Linfield, A. Giles Davies, Dragan Indjin, and Aleksandar D. Rakić
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-9-10153
We propose a laser feedback interferometer operating at multiple terahertz (THz) frequency bands by using a pulsed coupled-cavity THz quantum cascade laser (QCL) under optical feedback. A theoretical model that contains multi-mode reduced rate equations and thermal equations is presented, which captures the interplay between electro-optical, thermal, and feedback effects. By using the self-heating effect in both active and passive cavities, self-mixing signal responses at three different THz frequency bands are predicted. A multi-spectral laser feedback interferometry system based on such a coupled-cavity THz QCL will permit ultra-high-speed sensing and spectroscopic applications including material identification.
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Sunday, January 8, 2017
Abstract-Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice
Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-1-486
We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Full Article | PDF Article
Sunday, December 11, 2016
Abstract-Optical feedback effects on terahertz quantum cascade lasers: modelling and applications
Aleksandar D. Rakić, Yah Leng Lim, Thomas Taimre, Gary Agnew, Xiaoqiong Qi, Karl Bertling, She Han, Stephen J. Wilson
The Univ. of Queensland (Australia)
Andrew Grier, Zoran Ikonić, Alexander Valavanis, Aleksandar Demić, James Keeley, Lianhe H. Li, Edmund H. Linfield, A. Giles Davies, Dragan Indjin
Univ. of Leeds (United Kingdom)
Paul Harrison
Sheffield Hallam Univ. (United Kingdom)
Blake Ferguson, Graeme Walker
QIMR Berghofer Medical Research Institute (Australia)
Tarl W. Prow, H. Peter Soyer
The Univ. of Queensland School of Medicine (Australia)
Proc. SPIE 10030, Infrared, Millimeter-Wave, and Terahertz Technologies IV, 1003016 (December 8, 2016); doi:10.1117/12.2250621
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2593076
Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1–5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wednesday, August 31, 2016
Abstract-Model for a pulsed terahertz quantum cascade laser under optical feedback
Gary Agnew, Andrew Grier, Thomas Taimre, Yah Leng Lim, Karl Bertling, Zoran Ikonić, Alexander Valavanis, Paul Dean, Jonathan Cooper, Suraj P. Khanna, Mohammad Lachab, Edmund H. Linfield, A. Giles Davies, Paul Harrison, Dragan Indjin, and Aleksandar D. Rakić
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-18-20554
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Full Article | PDF Article
Thursday, October 2, 2014
Biomedical applications of terahertz self-mixing interferometry
Aleksandar D. Rakic, Karl Bertling, Yah Leng Lim, Stephen J. Wilson, Milan Nikolic, Thomas Taimre, Dragan Indjin, Alexander Valavanis, Edmund H. Linfield, A. Giles Davies, Graeme Walker, Blake Ferguson, Tarl W. Prow, Helmut Schaider and H. Peter Soyer
A novel imaging and tissue analysis scheme in the terahertz frequency band has the benefits of simplicity, coherence, and high sensitivity.
http://spie.org/x110285.xml
http://spie.org/x110285.xml
2 October 2014, SPIE Newsroom. DOI: 10.1117/2.1201409.005613
Terahertz radiation has an inherently low penetration depth in hydrated biological tissue, so skin is an ideal target for imaging at terahertz frequencies. Examining structures within the surface layers of skin is a mainstay of diagnosis in pathology, and using several different frequency regions to image these can provide complementary information about skin structure and function. The research community has successfully developed diagnostic methods based on the response of tissue in the terahertz spectral region.1However, to date, the absence of a compact, robust, inexpensive sensing solution has impeded general adoption of terahertz radiation for biological applications.
The quantum cascade laser (QCL) is one of the most promising radiation sources for imaging at terahertz frequencies. As with other lasers, QCLs exhibit self-mixing (SM), whereby re-injection of emitted radiation into the laser cavity affects the laser operating parameters. We can exploit this phenomenon for sensing purposes, using it to measure displacement, velocity, and fluid flow, as well as for coherent and incoherent imaging.
Here we present an imaging and tissue analysis scheme in the terahertz band that exploits the interferometric nature of coherent optical feedback in a terahertz QCL. SM interferometry is essentially a homodyne detection scheme, where the stable local oscillator signal (the QCL emission) is combined with the time-delayed version of itself. Figure 1 shows the basic structure and operating principles of our SM interferometer. The re-injected light interferes (‘ mixes’) with the intra-cavity electric field, causing small variations in the fundamental laser parameters, including the threshold gain, emitted power, lasing spectrum, and laser terminal voltage.2While optical feedback affects almost all laser parameters, the two we can most conveniently monitor are the emitted optical power and the voltage across the laser terminals. Of these, monitoring the laser terminal voltage is preferable as it obviates the need for an external terahertz detector.3The small voltage variation (referred to as the SM signal) depends on both the amplitude and phase of the electric field of the reflected laser beam. This results in a highly sensitive and compact sensing technique that can probe information about the complex reflectivity or refractive index of the external target.
Figure 1. Schematic diagram of the setup for tissue imaging experiments. PC DAQ: Data acquisition. Mod i/p: Modulation input. QCL: Quantum cascade laser.
We can create SM signals by exploiting temporal variations in optical length of the external cavity (through variation of its refractive index or the physical length), complex reflectivity of the target, or the laser frequency. The imaging process involves illuminating static objects with terahertz radiation. In other words, the objects being imaged are not changing during the signal acquisition. Therefore, we require some type of modulation to generate an SM signal. Here we opt for slow frequency modulation,4which results in an SM waveform imprinted with the complex refractive index of the target. The sensitivity of this scheme is discussed in detail elsewhere.5
We performed tissue imaging experiments using porcine tissue and murine skin. We first acquired a 2D array of time-domain waveforms and then reduced each waveform to a corresponding array of numbers, forming an image. Figure 2 shows results of the reflection-mode imaging of a 3mm-diameter skin biopsy from the transgenic laboratory mouse strain Cdk4::Tyr-NRAS.6, 7 The sample in Figure 2(a) shows a barely visible stage 1 melanoma lesion on the left hand side of the sample. Figure 2(b) shows a signal strength reduction of the terahertz waveforms, while Figure 2(c) shows a corresponding phase reduction from the array of SM waveforms. We can relate the tumor plaque in this sample to features observable in the pair of terahertz image reductions.
Figure 2. (a) Photograph of the 3mm diameter skin biopsy from the Cdk4::Tyr-NRAS sample. (b) Trimmed total variation, showing a signal strength reduction of the terahertz self-mixing waveforms. (c) Trimmed last peak position, showing a phase-like reduction of the terahertz self-mixing waveforms.
In summary, we developed a highly sensitive and compact scheme that shows promise for biological imaging in the terahertz frequency range. Our approach offers the possibility of early detection of skin changes before they become apparent in visible images. Our results also point toward techniques for the characterization of healthy tissue types for the study of normal physiology and possible therapeutic approaches. Additionally, imaging of skin malignancy in animal models at terahertz wavelengths shows earlier and potentially more powerful discrimination than is currently possible in the visible and IR regions of the spectrum.
Continuous improvements in terahertz QCL technology will lead to devices operating at higher temperatures and consequently more robust and compact self-mixing instruments for tissue characterization. In future work, we will investigate the origin of contrast in biological tissues based on water content and distribution, and we will assess the innate molecular response at terahertz frequencies. A clearer understanding of these factors will guide us towards discriminating a variety of skin pathologies.
This research was supported under the Australian Research Council's Discovery Projects funding scheme (DP 120 103703) and a Cancer Research UK Leeds Centre Development Fund Equipment award (Grant number C37059/A16369). We also acknowledge support of the ERC ‘NOTES’ and ‘TOSCA’ programs, the Royal Society, the Wolfson Foundation, and the European Cooperation in Science and Technology (COST) Action BM1205. Author Yah Leng Lim acknowledges support under the Queensland Government's Smart Futures Fellowships program.
Aleksandar D. Rakic, Karl Bertling, Yah Leng Lim, Stephen J. Wilson, Milan Nikolic, Thomas Taimre
School of Information Technology and Electrical Engineering, The University of Queensland
Brisbane, Australia
Dragan Indjin, Alexander Valavanis, Edmund H. Linfield, A. Giles Davies
University of Leeds
Leeds, UK
Graeme Walker, Blake Ferguson
Queensland Institute of Medical Research
Herston, Australia
Tarl W. Prow, Helmut Schaider, H. Peter Soyer
Translational Research Institute
Brisbane, Australia
References:
1. C. Yu, S. Fan, Y. Sun, E. Pickwell-MacPherson, The potential of terahertz imaging for cancer diagnosis: A review of investigations to date, Quant. Imag. Med. Surg. 2(1), p. 33-45, 2012.
2. G. Giuliani, M. Norgia, S. Donati, T. Bosch, Laser diode self-mixing technique for sensing applications, J. Opt. A, Pure Appl. Opt. 4(6), p. S283-S294, 2002.
3. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, P. Suraj Khanna, M. Lachab, Terahertz imaging through self-mixing in a quantum cascade laser, Opt. Lett. 36(13), p. 2587-2589, 2011.
4. A. D. Rakić, D. Aleksandar, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis, Opt. Express 21(19), p. 22194-22205, 2013.
5. T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, A. D. Rakić, Methodology for materials analysis using swept-frequency feedback interferometry with terahertz frequency quantum cascade lasers, Opt. Express 22(15), p. 18633-18647, 2014.
6. E. M. Wurm, L.L. Lin, B. Ferguson, D. Lambie, T. W. Prow, G. J. Walker, H. P. Soyer, A blueprint for staging of murine melanocytic lesions based on the Cdk4(R24C/R24C)::Tyr-NRAS(Q)(61K) model, Exp. Dermatol. 21(9), p. 676-681, 2012.
7. E. Chai, B. Ferguson, T. Prow, P. Soyer, G. Walker, Three-dimensional modelling for estimation of nevus count and probability of nevus-melanoma progression in a murine model, Pigm. Cell Mel. Res. 27(2), p. 317-319, 2014.
Saturday, June 28, 2014
Abstract-Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities
Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies »View Author Affiliations
|
Optics Express, Vol. 22, Issue 13, pp. 16595-16605 (2014)
http://dx.doi.org/10.1364/OE.22.016595
http://dx.doi.org/10.1364/OE.22.016595
Discrete Vernier frequency tuning of terahertz quantum cascade lasers is demonstrated using a device comprising a two-section coupled-cavity. The two sections are separated by a narrow air gap, which is milled after device packaging using a focused ion beam. One section of the device (the lasing section) is electrically biased above threshold using a short current pulse, while the other section (the tuning section) is biased below threshold with a wider current pulse to achieve controlled localized electrical heating. The resulting thermally-induced shift in the longitudinal cavity modes of the tuning section is engineered to produce either a controllable blue shift or red shift of the emission frequency. This discrete Vernier frequency tuning far exceeds the tuning achievable from standard ridge lasers, and does not lead to any corresponding change in emitted power. Discrete tuning was observed over bandwidths of 50 and 85 GHz in a pair of devices, each using different design schemes. Interchanging the lasing and tuning sections of the same devices yielded red shifts of 20 and 30 GHz, respectively.
© 2014 Optical Society of America
Subscribe to:
Posts (Atom)