Showing posts with label Mattias Beck. Show all posts
Showing posts with label Mattias Beck. Show all posts

Monday, December 25, 2017

Abstract-Patch array antenna coupling of THz source and detector



Lorenzo Bosco, Giacomo Scalari, Mattias Beck, and Jerome Faist

https://www.osapublishing.org/abstract.cfm?uri=cleo_si-2017-SM3J.5&origin=search

We study the performance of a Terahertz (THz) source-detector system coupled through equal patch-array antennas, using a single mode Quantum Cascade Laser and a Quantum Well Infrared Photodetector. The antenna allows surface emission and detection of light and use Benzocyclobutene as support.
© 2017 OSA

Monday, September 18, 2017

Abstract-Intensity autocorrelation measurements of frequency combs in the terahertz range


Ileana-Cristina Benea-Chelmus, Markus Rösch, Giacomo Scalari, Mattias Beck, and Jérôme Faist


We report on direct measurements of the emission character of quantum cascade laser based frequency combs, using intensity autocorrelation. Our implementation is based on fast electro-optic sampling, with a detection spectral bandwidth matching the emission bandwidth of the comb laser, around 2.5 THz. We find the output of these frequency combs to be continuous even in the locked regime, but accompanied by a strong intensity modulation. Moreover, with our record temporal resolution of only few hundreds of femtoseconds, we can resolve correlated intensity modulation occurring on time scales as short as the gain recovery time, about 4 ps. By direct comparison with pulsed terahertz light originating from a photoconductive emitter, we demonstrate the peculiar emission pattern of these lasers. The measurement technique is self-referenced and ultrafast, and requires no reconstruction. It will be of significant importance in future measurements of ultrashort pulses from quantum cascade lasers.
  • Figure
  • Figure
  • Figure
  • Figure

Wednesday, September 13, 2017

Abstract-Waveguide Embedding of a Double-Metal 1.9-THz Quantum Cascade Laser: Design, Manufacturing, and Results


 Matthias Justen. Keita Otani,  Dana Turčinková, Fabrizio Castellano,  Mattias Beck, Urs U. Graf, Denis Büchel, Michael Schultz,  Jérôme Faist

http://ieeexplore.ieee.org/document/8025815/


We present the details of a coupling structure to embed a 1.9-THz double-metal quantum cascade lasers (QCLs) into a 120-μm-wide full-height rectangular waveguide. We describe the split-block manufacturing of the waveguide coupler together with a diagonal feed horn and present power and beam shape measurements of two different devices. The two devices differ in coupling factor, which can be chosen in a wide range by the mounting position of the QCL. Our waveguide embedding allows coupling of a large fraction of the laser power into the waveguide and the subsequent horn antenna emitting with a large Gaussian mode content, enabling efficient integration into a diffraction limited optics setup. This is illustrated by a self-mixing experiment and by using the embedded QCL as a local oscillator in a heterodyne receiver.

Monday, December 26, 2016

Abstract-Ultra-broadband quantum cascade laser operating from 1.88 to 3.82 THz





We report on a heterogeneous active region design for terahertz quantum cascade laser based frequency combs. Dynamic range, spectral bandwidth as well as output power have been significantly improved with respect to previous designs. When operating individually the lasers act as a frequency comb up to a spectral bandwidth of 1.1 THz, while in a dispersed regime a bandwidth up to 1.94 THz at a center frequency of 3 THz can be reached. A self-detected dual-comb setup has been used to verify the frequency comb nature of the lasers.

Friday, December 2, 2016

Abstract-Measuring intensity correlations of a THz quantum cascade laser around its threshold at sub-cycle timescales



The quantum nature of photonic systems is reflected in the photon statistics of the light they emit. Therefore, the development of quantum optics tools with single photon sensitivity and excellent temporal resolution is paramount to the development of exotic sources, and is particularly challenging in the THz range where photon energies approach kbT at T=300 K. Here, we report on the first room temperature measurement of field g1({\tau}) and intensity correlations g2({\tau}) in the THz range with sub-cycle temporal resolution (146 fs) over the bandwidth 0.3-3 THz, based on electro-optic sampling. With this system, we are able to measure the photon statistics at threshold of a THz Quantum Cascade Laser.

Thursday, November 10, 2016

Abstract-Strain-Compensated InGaAs Terahertz Quantum Cascade Lasers


Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland
ACS Photonics, Article ASAP
DOI: 10.1021/acsphotonics.6b00376
Publication Date (Web): November 9, 2016
Copyright © 2016 American Chemical Society




Strain-compensated InGaAs/AlInGaAs terahertz quantum cascade lasers grown by molecular beam epitaxy are reported. A choice of a moderate amount of strain in the wells (−0.24%) and in the quaternary barriers (+1.07%) makes it possible to coherently grow an active region as thick as 10 μm. Lasers based on a four quantum well design emit at 3.3 THz with a maximum operation temperature of 149 K, which is among the highest temperatures of InGaAs-based THz quantum cascade lasers.

Friday, September 23, 2016

Abstract-Short pulse generation and mode control of broadband terahertz quantum cascade lasers



Dominic Bachmann, Markus Rösch, Martin J. Süess, Mattias Beck, Karl Unterrainer, Juraj Darmo, Jérôme Faist, and Giacomo Scalari

https://www.osapublishing.org/optica/abstract.cfm?uri=optica-3-10-1087

Ultra-short pulses are an attractive way of expanding today’s terahertz time-domain systems toward frequencies above 2 THz, and moreover mode control enables reliable generation of terahertz frequency combs based on quantum cascade lasers. We report on a waveguide engineering technique that enables the generation of a bandwidth up to ~ THz ~ 1  and an ultra-short pulse length of 2.5 ps in injection-seeded terahertz quantum cascade lasers. The reported technique is able to control and fully suppress higher order lateral modes in broadband terahertz quantum cascade lasers by introducing side-absorbers to metal–metal waveguides. The side-absorbers consist of a top metallization setback with respect to the laser ridge and an additional lossy metal layer. In continuous wave operation, the side-absorbers lead to octave-spanning laser emission, ranging from 1.63 to 3.37 THz, exhibiting a 725 GHz wide flat top within a 10 dB intensity range, as well as frequency comb operation with a bandwidth of 442 GHz. Numerical and experimental studies have been performed to optimize the impact of the side-absorbers on the emission properties and to determine the required increase of waveguide losses. Furthermore, these studies have led to a better understanding of the pulse formation dynamics of injection-seeded quantum cascade lasers.
© 2016 Optical Society of America
Full Article  |  PDF Article

Friday, February 5, 2016

Abstract-Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.



http://www.pubfacts.com/detail/26831993/Dynamics-of-ultra-broadband-terahertz-quantum-cascade-lasers-for-comb-operation

We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.

Wednesday, December 9, 2015

Abstract-SUB-CYCLE MEASUREMENT OF INTENSITY CORRELATIONS IN THE TERAHERTZ RANGE





Ileana-Cristina Benea-ChelmusGiacomo ScalariMattias BeckJerome Faist

http://www.mathpubs.com/detail/1512.02198v1/Sub-cycle-measurement-of-intensity-correlations-in-the-Terahertz-range

The Terahertz frequency range bears intriguing opportunities, beyond very advanced applications in spectroscopy and matter control. Peculiar quantum phenomena are predicted to lead to light emission by non-trivial mechanisms. Typically, such emission mechanisms are unraveled by temporal correlation measurements of photon arrival times, as demonstrated in their pioneering work by Hanbury Brown and Twiss. So far, the Terahertz range misses an experimental implementation of such technique with very good temporal properties and high sensitivity. In this paper, we propose a room-temperature scheme to measure photon correlations at THz frequencies based on electro-optic sampling. The temporal resolution of 146 fs is faster than one cycle of oscillation and the sensitivity is so far limited to ~1500 photons. With this technique, we measure the photon statistics of a THz quantum cascade laser. The proposed measurement scheme allows, in principle, the measurement of ultrahigh bandwidth photons and paves the way towards THz quantum optics.

Saturday, April 4, 2015

Octave-spanning semiconductor laser for frequency comb applications



A new terahertz quantum cascade laser, in continuous wave operation, has an emission that homogeneously covers more than one frequency octave.

3 April 2015, SPIE Newsroom. DOI: 10.1117/2.1201503.005783


The recent development of frequency combs has revolutionized the field of high-resolution spectroscopy. These combs can be used as frequency domain ‘rulers,’ and can be realized from either a short-pulse mode-locked laser1 or via nonlinear processes.2, 3 The laser emission from a comb can be stabilized and frequency-locked to highly stable microwave oscillators. The most common—and most efficient—method of stabilizing the offset frequency of a comb is based on a self-referencing approach,4 which requires laser emission that spans at least one octave. It is therefore important to achieve an octave-spanning spectrum with any broadband laser that is used for frequency comb generation.
Purchase SPIE Field Guide to LasersFrequency combs have so far been demonstrated in the visible,5 mid-IR,3, 6,7 and terahertz (THz)8,9regions of the electromagnetic spectrum. The effective metrology and high-precision spectroscopy measurements that the combs enable1, 10–12 have many applications in several fundamental research and industrial environment contexts. Quantum cascade lasers (QCLs)13 are based on intersubband transitions between quantized electronic energy levels in the conduction band of semiconductor heterostructures. They can be used as compact coherent sources that emit radiation across mid-IR and THz wavelengths.14QCLs constitute an ideal platform for broadband sources and nonlinear optics as they exhibit an absence of reabsorption across the band gap.
We have developed new QCLs with ultra-broad gain bandwidths. We achieve these bandwidths by exploiting the quantum engineering potential of intersubband transitions. We integrate different designs of a quantum cascade structure in the same laser ridge, but tailored for different frequencies. This heterogeneous cascade concept was first demonstrated for mid-IR QCLs,15 and has also been successfully implemented in THz QCLs.16–19 In our work, we use three different active regions that are centered at 2.9, 2.6, and 2.3THz, and stacked together to fill the core of a broadband, cutoff-free double metal resonator.20, 21 As illustrated in Figure 1, THz lasers rely on metal-metal waveguides for optimal mode confinement. We have therefore taken special care in the design of the active regions and the resulting gain profile to obtain uniform power across the entire lasing region.


 
Figure 1. Scanning electron microscope image of a processed 50μm dry-etched laser (top). The inset shows the electric field intensity distribution of a metal-metal waveguide. Light-current and current-voltage characteristics for a 2mm ×150μm laser (thickness about 13μm) operated in continuous wave (CW) mode at different temperatures (bottom). The first power axis is normalized to a measurement made with a broad area terahertz (THz) absolute power meter (TK Instruments, aperture 55 ×40mm2). The second power axis shows measurements made with an Ophir THz absolute power meter with a smaller detector surface area (aperture diameter 12mm). A maximum power of 3.4mW in CW at 25K was achieved.
As has previously been shown,19 lasing spectra broaden gradually when their bias current increases. The broadest bandwidth is reached for a current density of 350A/cm2. A typical spectrum that we obtained at this operating point from a 2mm × 50μm dry-etched laser ridge is shown in Figure 2(a). In this spectrum, at temperatures up to 30K, the lasing region extends from 1.64 to 3.35THz (i.e., it covers more than one octave). The mode intensity is very well distributed, and we achieved a total of 84 modes above the lasing threshold. The broadband emission from this laser is present up to 40K, where the bandwidth is still 1.53Thz.




 
Figure 2. (a) Octave-spanning spectrum from a dry-etched 2mm ×50μm laser operating in CW mode (9.7V, 0.35A, 350A/cm2) at 18K. (b) Spectral emission for the maximum bandwidth of the comb regime, measured at 380mA. (c) Corresponding electrical beatnote, measured with an antenna. a.u.: Arbitrary units. BW: Bandwidth.
To characterize the spectral emission and coherence from our new laser, we performed beatnote (microwave signal caused by nonlinear mixing of laser modes inside the cavity) measurements at different points along the light-current curve. For our typical cavity lengths, the beatnote is in the 10–20GHz range. The presence of a beatnote, its intensity, and its linewidth are quantitative parameters that can be used to characterize the coherence of different lasing modes in a multimode laser. Beatnote analysis such as this is routinely used with frequency combs. A very narrow beatnote (less than 4kHz) is present up to an operating current of 20mA. When the bias current is increased further, however, the beatnote instantaneously broadens to have a linewidth of hundreds of MHz. It has been shown experimentally3, 9and theoretically22 that the beatnote collapse of a QCL is a clear indication that the laser is acting as a frequency comb.
With QCLs, comb operation does not correspond to the formation of short pulses in the time domain. This is in contrast to frequency combs that are obtained from mode-locked lasers. For QCL combs—as for Kerr combs that are based on micro-resonators2—the output power is about constant in time. As further evidence for comb operation, we have shown that filtering the laser signal at different frequencies does not affect the presence and linewidth of an optically measured beatnote.20 An electrical beatnote measurement, with corresponding spectral emission in the THz domain, is shown in Figure 2(b) and (c). The maximum bandwith—at which comb operation is observed—is 625GHz. This frequency corresponds to 23% bandwidth, with respect to the central frequency of 2.67THz.
We have created an octave-spanning semiconductor laser that emits in the THz range, with no spectral holes in either pulsed or continuous wave operation. We believe that this is the first octave-spanning semiconductor laser to have been developed. Our laser features a comb region with a sub-kHz beatnote, and corresponding spectral emission of more than 600GHz bandwidth.20 Although the operating conditions of our laser are limited to cryogenic temperatures, we believe that these lasers can constitute the building blocks for a compact, high-resolution spectroscopic system that is based on THz combs. We have also demonstrated that THz QCLs can be integrated easily into portable systems.23 Our future research will focus on self-stabilization of the frequency comb and the application of these devices in dual-comb-based spectrometers,24 to enable fast THz spectroscopy without moving parts.
We gratefully acknowledge funding for this work as part of the European Union's TERACOMB research project (FP7-ICT-2011-C, project 296500). We also thank G. Villares, A. Hugi, C. Bonzon, and S. Barbieri for helpful discussions.

Giacomo Scalari, Markus Rösch, Mattias Beck, Jérôme Faist
Institute of Quantum Electronics
Swiss Federal Institute of Technology (ETHZ)
Zurich, Switzerland




Giacomo Scalari obtained his PhD in 2005 and is currently a senior staff scientist. His research interests range from THz QCLs to THz strong light-matter coupling. He received the 2006 Swiss Physical Society award for applied physics.

References:
1. T. Udem, R. Holzwarth, T. W. Hänsch, Optical frequency metrology, Nature 416, p. 233-237, 2002. doi:10.1038/416233a
2. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, Optical frequency comb generation from a monolithic microresonator, Nature 450, p. 1214-1217, 2007.
3. A. Hugi, G. Villares, S. Blaser, H. C. Liu, J. Faist, Mid-infrared frequency comb based on a quantum cascade laser, Nature 492, p. 229-233, 2012. doi:10.1038/nature11620
4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hänsch, Direct link between microwave and optical frequencies with a 300THz femtosecond laser comb, Phys. Rev. Lett. 84, p. 5102-5105, 2000doi:10.1103/PhysRevLett.84.5102
5. S. A. Diddams, The evolving optical frequency comb, J. Opt. Soc. Am. B 27, p. B51-B62, 2010.
6. A. Schliesser, N. Picqué, T. W. Hänsch, Mid-infrared frequency combs, Nat. Photon.6(7), p. 440-449, 2012.
7. F. Keilmann, C. Gohle, R. Holzwarth, Time-domain mid-infrared frequency-comb spectrometer, Opt. Lett. 29, p. 1542-1544, 2004.
8. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, T. Araki, Terahertz frequency metrology based on frequency comb, IEEE J. Sel. Topics Quantum Electron.17, p. 191-201, 2011. doi:10.1109/JSTQE.2010.2047099
9. D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, Q. Hu, Terahertz laser frequency combs, Nat. Photon. 8, p. 462-467, 2014. doi:10.1038/nphoton.2014.85
10. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, Optical frequency synthesizer for precision spectroscopy, Phys. Rev. Lett. 85, p. 2264-2267, 2000doi:10.1103/PhysRevLett.85.2264
11. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, T. Araki, Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy, Appl. Phys. Lett. 88, p. 241104, 2006. doi:10.1063/1.2209718
12. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, Cavity-enhanced dual-comb spectroscopy, Nat. Photon. 4, p. 55-57, 2010. doi:10.1038/nphoton.2009.217
13. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Quantum cascade laser, Science 264, p. 553-556, 1994.
14. J. Faist, Quantum Cascade Lasers, p. 328, Oxford Univ. Press, 2013.
15. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, A. Y. Cho, Ultra-broadband semiconductor laser, Nature 415, p. 883-887, 2002. doi:10.1038/415883a
16. J. R. Freeman, O. P. Marshall, H. E. Beere, D. A. Ritchie, Electrically switchable emission in terahertz quantum cascade lasers, Opt. Express 16, p. 19830-19835, 2008. doi:10.1364/OE.16.019830
17. J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, D. A. Ritchie, Dual wavelength emission from a terahertz quantum cascade laser, Appl. Phys. Lett. 96, p. 051120, 2010. doi:10.1063/1.3304783
18. S. P. Khanna, M. Salih, P. Dean, A. G. Davies, E. H. Linfield, Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region, Appl. Phys. Lett.95, p. 181101, 2009. doi:10.1063/1.3253714
19. D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, J. Faist, Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz, Appl. Phys. Lett. 99, p. 191104, 2011. doi:10.1063/1.3658874
20. M. Rösch, G. Scalari, M. Beck, J. Faist, Octave-spanning semiconductor laser, Nat. Photon. 9, p. 42-47, 2015. doi:10.1038/nphoton.2014.279
21. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. E. Beere, D. A. Ritchie, J. Faist, THz and sub-THz quantum cascade lasers, Laser Photon. Rev. 3, p. 45-66, 2009.
22. J. Khurgin, Y. Dikmelik, A. Hugi, J. Faist, Coherent frequency combs produced by self frequency modulation in quantum cascade lasers, Appl. Phys. Lett. 104, p. 081118, 2014. doi:10.1063/1.4866868
23. M. I. Amanti, G. Scalari, M. Beck, J. Faist, Stand-alone system for high-resolution, real-time terahertz imaging, Opt. Express 20, p. 2772-2778, 2012.
24. G. Villares, A. Hugi, S. Blaser, J. Faist, Dual-comb spectroscopy based on quantum-cascade-laser frequency combs, Nat. Commun. 5, p. 5192, 2014. doi:10.1038/ncomms6192

Thursday, April 2, 2015

Tuesday, February 3, 2015

Abstract-Broadband terahertz amplification in a heterogeneous quantum cascade laser



Broadband terahertz amplification in a heterogeneous quantum cascade laser

Dominic Bachmann, Norbert Leder, Markus Rösch, Giacomo Scalari, Mattias Beck, Holger Arthaber, Jérôme Faist, Karl Unterrainer, and Juraj Darmo  »View Author Affiliations
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-3-3117
Optics Express, Vol. 23, Issue 3, pp. 3117-3125 (2015)
http://dx.doi.org/10.1364/OE.23.003117

View Full Text Article
Enhanced HTML    Acrobat PDF (1712 KB)
We demonstrate a broadband terahertz amplifier based on ultrafast gain switching in a quantum cascade laser. A heterogeneous active region is processed into a coupled cavity metal-metal waveguide device and provides broadband terahertz gain that allows achieving an amplification bandwidth of more than 500 GHz. The temporal and spectral evolution of a terahertz seed pulse, which is generated in an integrated emitter section, is presented and an amplification factor of 21 dB is reached. Furthermore, the quantum cascade amplifier emission spectrum of the emerging sub-nanosecond terahertz pulse train is measured by time-domain spectroscopy and reveals discrete modes between 2.14 and 2.68 THz.
© 2015 Optical Society of America

Monday, April 28, 2014

Abstract-How to tune terahertz quantum cascade lasers



A transistor structure integrated into a laser waveguide electrically controls the emission frequency.
28 April 2014, SPIE Newsroom. DOI: 10.1117/2.1201404.005402
Laser-based spectroscopic sensing is now widely used in a variety of field applications such as environmental monitoring. The most suitable light source is quantum cascade lasers (QCLs), which emit a high-output optical power with a very narrow linewidth in the spectral range from mid-IR (MIR) to terahertz (THz). For spectroscopic sensing applications, the laser emission frequency must be tuned to the specific frequency at which target molecules and ions absorb light. MIR QCLs are easy to tune by controlling the device temperature, which changes the effective refractive index. In contrast, temperature has little effect on the refractive index of THz QCLs, which cannot be tuned in the same way.1
We have developed a novel technique to tune THz QCLs.2 Our device is based on a three-terminal configuration consisting of two layered sections: a THz QCL based on gallium arsenide (target frequency: 4.7THz) and a pseudomorphic high-electron-mobility transistor (PHEMT) with an indium gallium arsenide (InGaAs) single quantum well (QW) electron channel, where the carrier density in the electron channel is modulated by applying voltage to the buried contact and the PHEMT electron channel (see Figure1).3 The buried contact is integrated into the laser waveguide (through which the emitted laser light travels). This varies the effective refractive index of the single surface plasmon waveguide,4 shifting the laser emission frequency.
 
Figure 1. Schematic of a three-terminal terahertz (THz) quan- tum cascade laser (QCL) with a single surface plasmon waveguide. It consists of two sections: a gallium arsenide/aluminum gallium arsenide (GaAs/Al0.15Ga0.85As) THz QCL active region and an indium gallium arsenide/aluminum gallium arsenide (In0.1Ga0.9As/Al0.3Ga0.7As) pseudomorphic high-electron-mobility transistor with a single quantum well electron channel. For QCL operation, a pulsed voltage was applied between the top metal contact on the active region and the middle contact on the buried n-GaAs contact layer, while the bottom contact on the electron channel was used to control electron density in the channel by electrical gating with applied voltage Vg.
 
Figure 2. (a) Current-voltage-light output power (I-V-L) characteristics of the GaAs THz QCL section (78μm-wide and 1.4mm-long ridge) as a function of Vg. Current pulses of 100ns width at a duty cycle of 1% were used. (b) Waveguide loss changes (Δαw) as a function of Vg. We observed a significant increase of Jth (28%) and Δαw when Vg was increased from −3 to 2V.
Figure 2(a) shows laser operation current-voltage-light output power (I-V-L) characteristics as a function of gate voltage (Vg). The threshold current density (Jth) increased with Vg from −3 to 2V although the I-V curves almost remained unchanged. We interpret the increase of Jth with Vg as indicating increased absorption in the waveguide due to electron accumulation in the InGaAs channel by Vg. The filled squares in Figure 2(b) represent the computed waveguide loss changes (Δαw) as a function of Vg. Δαw was estimated using an experimentally obtained QCL gain coefficient and a computed loss by facet reflection (mirror loss). We found that the change in waveguide loss Δαw is modulated by more than 20cm−1 as a function of Vg.
 
Figure 3. (a) Vg dependence of one dominating laser cavity mode. We observed a similar Vg dependence even though the laser operation condition is changed. The maximum frequency shift was about 2GHz. (b) Converted refractive index change Δneff as a function of Vg. The observed change in neff by Vg is qualitatively interpreted by the large dispersion of the intersub-band transition in the electron channel.
Figure 3(a) shows the evolution of one dominating laser cavity mode at the heat sink temperature of 10K as a function of gate voltage Vg. The laser cavity mode first shows a blue shift (shift to a higher wavenumber) as Vgincreases from −2.5to 0V, whereas a red shift (i.e., to a lower wavenumber) is observed in a positive gate bias Vg from 0 to 1.5V. In this range of Vg, the maximum frequency shift is about 2GHz. The same qualitative gate dependence of the spectrum is observed at the different laser operation voltages. Figure 3(b) depicts the converted refractive index change (Δneff) from the observed frequency shift. Δneff first decreases when Vg increases from −2.25 to 0V and then starts to increase with positive Vg. Analysis showed that the Δneff dependence on n results from a refractive index change induced by the/an intersub-band optical transition in the electron channel. Both the energy shift of the intersub-band transition energy by the electric field and the electron accumulation/depletion in the electron channel play a crucial role in determining Δneff.
An interesting feature of this device is the ability to perform frequency modulation for communication with a higher signal-to-noise ratio compared with amplitude modulation. We achieved the same output power with different laser emission frequencies at certain laser operating conditions by simultaneously varying Vg and the drive current J. As an example, the laser emission frequency is linearly reduced by ≈2GHz when Vg increases from 0.5 to 1.5V and the same output power is delivered if J is modulated. Thus, in principle, it would be possible to produce pure frequency modulation by modulating J and Vg simultaneously.
In summary, electrical tuning of laser frequency is a promising technique that is easy to integrate into practical device structures. In addition, PHEMT detects internal light, which is useful for stabilizing optical output power. Our next step is to apply this scheme to a double metal waveguide exhibiting better temperature performance.5 Its large confinement factor is expected to provide a larger tuning range.

Keita Ohtani, Mattias Beck, Jérôme Faist
Institute for Quantum Electronics
Swiss Federal Institute of Technology
Zurich, Switzerland

References:
1. M. S. Vitiello, A. Tredicucci, Tunable emission in terahertz quantum cascade lasers, IEEE Trans. THz Sci. Technol. 1, p. 76, 2011. doi:10.1109/TTHZ.2011.2159543
2. K. Ohtani, M. Beck, J. Faist, Electrical laser frequency tuning by three terminal terahertz quantum cascade lasers, Appl. Phys. Lett. 104, p. 011107, 2014. doi:10.1063/1.4861122
3. J. Teissier, S. Laurent, C. Manquest, C. Sirtori, A. Bousseksou, J. R. Coudevylle, R. Colombelli, G. Beaudoin, I. Sagnes, Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers, Opt. Express 20, p. 1172, 2012.doi:10.1364/OE.20.001172
4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser, Nature 417, p. 156, 2002. doi:10.1038/417156a
5. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, Quantum cascade lasers with double metal-semiconductor waveguide resonators, Appl. Phys. Lett. 80, p. 3060, 2002. doi:10.1063/1.1469657