The metamaterial analogue of electromagnetically induced transparency (EIT) in terahertz (THz) regime holds fascinating prospects for filling the THz gap in various functional devices. In this paper, we propose a novel hybrid metamaterial to actively manipulate the resonance strength of EIT effect. By integrating a monolayer graphene into a THz metal metamaterial, an on-to-off modulation of the EIT transparency window is achieved under different Fermi levels of graphene. According to the classical two-particle model and the distributions of the electric field and surface charge density, the physical mechanism is attributable to the recombination effect of conductive graphene. This work reveals a novel manipulation mechanism of EIT resonance in the hybrid metamaterial and offers a new perspective towards designing THz functional devices.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Thursday, March 29, 2018
Abstract-Active Manipulation of Electromagnetically Induced Transparency in a Terahertz Hybrid Metamaterial
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment