Showing posts with label University of Wisconsin. Show all posts
Showing posts with label University of Wisconsin. Show all posts

Friday, October 3, 2014

Graphene and Germanium: A Happy Marriage With Exceptional Conductivity


                                                                                 Image: University of Wisconsin-Madison

Graphene became the subject of much research because its electrical, mechanical, and optical properties make it an excellent material for electronics. The conductivity of freestanding graphene is comparable to that of copper. However, using graphene in electronic components requires a substrate to support it, and researchers were faced with a problem: graphene's electrical properties degrade when bonded to most substrates. For example, bonded to silicon dioxide, a material widely used in electronics because of its good insulating properties, graphene's conductivity decreases by two to three orders of magnitude.
Now a team of researchers has shown that graphene, when deposited on a germanium substrate covered with a thin germanium oxide layer, acquires excellent electrical properties, and its conductivity even improves compared to pure graphene. The team, from the University of Wisconsin-Madison and University of Notre Dame, reported their findings in ACS Nano earlier this month.
One reason the researchers decided to try germanium as a substrate was its low cost. "People have tried, besides silicon dioxide, boron nitride and cadmium telluride, which are expensive," says Francesca Cavallo, who was formerly at the University of Wisconsin-Madison and is now a professor of electrical and computer engineering at the University of New Mexico. A literature search of germanium showed that this material, a cheap substrate, could be a good candidate. "We found that germanium has a very high density of surface states which could provide charge to the graphene, so we tried that," she says.
For the experiment, the team transferred a graphene layer from a plastic support film directly onto the surface of the germanium substrate. Next the researchers passed a current through contacts at both ends of the graphene strip and measured the voltage between them [pictured above]. When a current of 5 µA passed through the strip, practically no voltage was measurable over the contacts, indicating that the conductivity was very high. For comparison, the researchers repeated the same experiment with graphene placed on a silicon dioxide substrate. This time they measured a voltage of about 60 mV, which suggested a decrease in conductivity.
To measure the electron density in the graphene layer, the researchers applied a magnetic field to the strip and measured the voltage across its width. At very low temperatures they could measure a voltage caused by a force acting on the electrons, known as the Lorentz force, resulting in the build-up of charge on one side of the strip (a phenomenon known as the Hall effect). At higher temperatures the build-up of electrons on one side of the strip became counterbalanced by the build-up of holes in the underlying germanium oxide layer, lowering the Hall voltage.
Trying to understand better how the graphene-germanium interface modifies the properties of graphene is the next step for Cavallo and her colleagues. She says they'll modify the interface, removing the oxide and performing more chemical analysis to find out "exactly what is going on."
For Cavallo, the discovery of the happy marriage between graphene and germanium could be an important step for a particular system she—and many others—are interested in because of its promising application: a terahertz emitter. "There are so few terahertz sources available that the terahertz region is called the 'terahertz gap', " she says.
One possibility would be using the new graphene-germanium material in a device called a mechanical wiggler, designed to produce terahertz radiation. The wiggler is a serpentine-shaped conductor that works like a miniature and mechanical version of a free-electron laser. But instead of forcing the electrons to follow an alternating magnetic field, it forces them to follow the bends of the serpentine conductor. As a result, the electrons give off what is known as synchrotron radiation at each curve.
One of Cavallo's colleagues and a co-author of the ACS Nano paper, Max Lagally, a physicist at the University of Wisconsin-Madison, explains that the challenge is that the serpentine cannot consist of metals because they are polycrystalline materials and the electrons wouldn't remain focused, scattering on the crystal boundaries. Enter graphene, which acts like a single crystal and could be potential candidate to make the mechanical wiggler a reality, he says. Lagally and another scientist, Robert Blick, have a patent for the device.
The researchers are hopeful that graphene wigglers on germanium will perform well. "You need a high density of carriers and a high mobility," Cavallo says, "so the combination of the two materials seems to be ideal for that."

Monday, September 29, 2014

OT-New Discovery Could Pave the Way for Spin-based Computing


Novel oxide-based magnetism follows electrical commands

 http://www.news.pitt.edu/news/new-discovery-could-pave-way-spin-based-computing
PITTSBURGH—Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A University of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.
WhileMagnetic states at oxide interfaces controlled by electricity. Top image show magnetic state with -3 volts applied, and bottom image shows nonmagnetic state with 0 volts applied.Magnetic states at oxide interfaces controlled by electricity. Top image show magnetic state with -3 volts applied, and bottom image shows nonmagnetic state with 0 volts applied. phones and laptops rely on electricity to process and temporarily store information, long-term data storage is still largely achieved via magnetism. Discs coated with magnetic material are locally oriented (e.g. North or South to represent “1” and “0”), and each independent magnet can be used to store a single bit of information. However, this information is not directly coupled to the semiconductors used to process information. Having a magnetic material that can store and process information would enable new forms of hybrid storage and processing capabilities.
Such a material has been created by the Pitt research team led by Jeremy Levy, a Distinguished Professor of Condensed Matter Physics in Pitt’s Kenneth P. Dietrich School of Arts and Sciences and director of the Pittsburgh Quantum Institute.
Levy, other researchers at Pitt, and colleagues at the University of Wisconsin-Madison today published their work in Nature Communications, elucidating their discovery of a form of magnetism that can be stabilized with electric fields rather than magnetic fields. The University of Wisconsin-Madision researchers were led by Chang-Beom Eom, the Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor in the Department of Materials Science and Engineering. Working with a material formed from a thick layer of one oxide—strontium titanate—and a thin layer of a second material—lanthanum aluminate—these researchers have found that the interface between these materials can exhibit magnetic behavior that is stable at room temperature. The interface is normally conducting, but by “chasing” away the electrons with an applied voltage (equivalent to that of two AA batteries), the material becomes insulating and magnetic. The magnetic properties are detected using “magnetic force microscopy,” an imaging technique that scans a tiny magnet over the material to gauge the relative attraction or repulsion from the magnetic layer.
The newly discovered magnetic properties come on the heels of a previous invention by Levy, so-called “Etch-a-Sketch Nanoelectronics” involving the same material. The discovery of magnetic properties can now be combined with ultra-small transistors, terahertz detectors, and single-electron devices previously demonstrated.
“This work is indeed very promising and may lead to a new type of magnetic storage,” says Stuart Wolf, head of the nanoSTAR Institute at the University of Virginia. Though not an author on this paper, Wolf is widely regarded as a pioneer in the area of spintronics.
“Magnetic materials tend to respond to magnetic fields and are not so sensitive to electrical influences,” Levy says. “What we have discovered is that a new family of oxide-based materials can completely change its behavior based on electrical input.”
This discovery was supported by grants from the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office.

Saturday, March 9, 2013

Semi-OT The electronic origin of photoinduced strain





http://phys.org/news/2013-02-electronic-photoinduced-strain.html#jCp

(Phys.org)—Multiferroics are in a class of materials that exhibits more than one ferroic order simultaneously. One of the prototypical multiferroics is BiFeO3, an important material because it is one of a few materials that exhibit both ferroelectricity and magnetism at room temperature. The interaction of BiFeO3 with light has attracted great attention because optical control of either magnetism, ferroelectricity, or both has implications for future electronic devices.

The origin of a large photoexcited structural change in BiFeO3 was not well understood because of the lack of direct experimental evidence, preventing a rational design for future optomechanical and optoelectrical applications using ferroelectric and multiferroic materials. 

Now, a team of researchers led by Argonne scientists at the Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM), along with colleagues from the University of Wisconsin-Madison, Cornell University, Northwestern University, Sandia National Laboratories, and Kavli Institute at Cornell for Nanoscale Science, has revealed the electronic origin of the interaction between optical light using a nanometer-thick layer of BFO at the atomic level and ultrafast time scales. Their work was recently published in Physical Review Letters. 

Under illumination with light, these multiferroic respond by creating a large electric current, termed a photocurrent, and can also change their atomic structure, both of which are potentially useful in applications.

 "One of the central problems is how the physical processes associated with the absorption of light in multiferroics leads to these potentially useful properties," said Paul Evans, an article co-author and professor at the University of Wisconsin-Madison. 

Utilizing state-of-art tools readily available at Argonne, a new approach was employed to study what happens after BiFeO3 is excited by an intense pulse of light. Structural studies were conducted using the X-ray Science Division (XSD) 7-ID-C ultrafast x-ray diffraction beamline at the APS. These structural results were compared with the electronic response measured at the ultrafast spectroscopy lab led by Richard Schaller at the CNM.

 "The large, optically induced strain decays within several billionths of a second, which turned out to be the same rate as the excited electrons return to their initial state," said Haidan Wen, the lead author of the paper and an assistant physicist with XSD. This key insight showed that the structural rearrangements after optical excitation were largely driven by electronic processes.

 Faster data storage devices with lower power consumption can result from optical control of electronic and structural properties. This understanding of how that light can induce simultaneous structural and electronic effects now enables optical control of ferroelectric and multiferroic materials without requiring electrical contacts. 

According to John Freeland, a co-author and a physicist in XSD, "The large optically induced strain opens a new route for ultrafast strain engineering of multifunctional complex oxides and new opportunities for manipulation of magnetism for spintronic applications." 

The researchers also believe that the technique can be applied to many other complex material systems and can be helped dramatically by the APS Upgrade. The development over the next five years of a short-pulse x-ray source at the APS will shorten the x-ray pulse by about a factor of 50.

 "Then we will see more detail of the electrons and atoms in action, and probe physics that is out of reach now, especially these occurring in the material right after the excitation by the laser pulse," said Yuelin Li, an XSD physicist and the paper's corresponding author. 

More information: Wen, H. et al. Electronic Origin of Ultrafast Photoinduced Strain in BiFeO3, Phys. Rev. Lett. 110, 037601 (2013). DOI: 10.1103/PhysRevLett.110.037601

Monday, April 16, 2012

UWM discovery advances graphene-based electronics



Physics Professor Michael Weinert and engineering graduate student Haihui Pu display the atomic structure on GMO. (Photos by Alan Magayne-Roshak)

http://www5.uwm.edu/news/2012/04/13/uwm-discovery-advances-graphene-based-electronics/


Scientists and engineers at the University of Wisconsin-Milwaukee (UWM) have discovered an entirely new carbon-based material that is synthesized from the “wonder kid” of the carbon family, graphene. The discovery, which the researchers are calling “graphene monoxide (GMO),” pushes carbon materials closer to ushering in next-generation electronics.
Graphene, a one-atom-thick layer of carbon that resembles a flat sheet of chicken wire at nanoscale, has the potential to revolutionize electronics because it conducts electricity much better than the gold and copper wires used in current devices. Transistors made of silicon are approaching the minimum size at which they can be effective, meaning the speed of devices will soon bottom out. Carbon materials at nanoscale could be the remedy.
Now all three characteristics of electrical conductivity – conducting, insulating and semiconducting – are found in the carbon family, offering needed compatibility for use in future electronics.
Currently, applications for graphene are limited because it’s too expensive to mass produce. Another problem is that, until now, graphene-related materials existed only as conductors or insulators.
“A major drive in the graphene research community is to make the material semiconducting so it can be used in electronic applications,” says Junhong Chen, professor of mechanical engineering and a member of the research team. “Our major contribution in this study was achieved through a chemical modification of graphene.”
GMO exhibits characteristics that will make it easier to scale up than graphene. And, like silicon in the current generation of electronics, GMO is semiconducting, necessary for controlling the electrical current in such a strong conductor as graphene. Now all three characteristics of electrical conductivity – conducting, insulating and semiconducting – are found in the carbon family, offering needed compatibility for use in future electronics.
Mixing theory and experiments

Professors Junhong Chen (left, mechanical engineering) and Marija Gajdardziska (physics) discuss the imaging with engineering graduate student Shumao Cui.
The team created GMO while conducting research into the behavior of a hybrid nanomaterial engineered by Chen that consists of carbon nanotubes (essentially, graphene rolled into a cylinder) decorated with tin oxide nanoparticles. Chen uses his hybrid material to make high-performance, energy-efficient and inexpensive sensors.
To image the hybrid material as it was sensing, he and physics professor Marija Gajdardziska used a high-resolution transmission electron microscope (HRTEM). But to explain what was happening, the pair needed to know which molecules were attaching to the nanotube surface, which were attaching to the tin oxide surface, and how they changed upon attachment.
So the pair turned to physics professor Carol Hirschmugl, who recently pioneered a method of infrared imaging (IR) that not only offers high-definition images of samples, but also renders a chemical “signature” that identifies which atoms are interacting as sensing occurs.
Chen and Gajdardziska knew they would need to look at more attachment sites than are available on the surface of a carbon nanotube. So they “unrolled” the nanotube into a sheet of graphene to achieve a larger area.
That prompted them to search for ways to make graphene from its cousin, graphene oxide (GO), an insulator that can be scaled up inexpensively. GO consists of layers of graphene stacked on top of one another in an unaligned orientation. It is the subject of much research as scientists look for cheaper ways to replicate graphene’s superior properties.
Puzzling outcome

Physics senior scientist Marvin Schofield (standing), physics doctoral student Eric Mattson, and Graduate School associate dean and physics professor Marija Gajdardziska examine the images of GMO using Selected Area Electron Diffraction (SAED) in a transmission electron microscope.
In one experiment, they heated the GO in a vacuum to reduce oxygen. Instead of being destroyed, however, the carbon and oxygen atoms in the layers of GO became aligned, transforming themselves into the “ordered,” semiconducting GMO – a carbon oxide that does not exist in nature.
It was not the result they expected.
“We thought the oxygen would go away and leave multilayered graphene, so the observation of something other than that was a surprise,” says Eric Mattson, a doctoral student of Hirschmugl’s.
At different high temperatures, the team actually produced four new materials that they collectively refer to as GMO. They captured video of the process using Selected Area Electron Diffraction (SAED) in a transmission electron microscope.
Because GMO is formed in single sheets, Gajdardziska says the material could have applications in products that involve surface catalysis. She, Hirschmugl and Chen also are exploring its use in the anode parts of lithium-ion batteries, which could make them more efficient.
Laborious process
But the next step is more science. The team will need to find out what triggered the reorganization of the material, and also what conditions would ruin the GMO’s formation.
“In the reduction process, you expect to lose oxygen,” says Michael Weinert, professor of physics and director of UWM’s Laboratory for Surface Studies. “But we actually gained more oxygen content. So we’re at a point where we’re still learning more about it.”
Weinert points out that they have only made GMO at a small scale in a lab and are not certain what they will encounter in scaling it up.
The team had to be careful in calculating how electrons flowed across GMO, he adds. Interactions that occur had to be interpreted through a painstaking process of tracking indicators of structure and then eliminating those that didn’t fit.
“It was a long process,” says Weinert, “not one of those ‘Eureka!’ moments.”
###
This work was published in the journal ACS Nano (5[12], 9710-9717, 2011). In addition to the four UWM faculty members and Mattson (the lead author), the team included UWM physics research associate Marvin Schofield and postdoctoral associate Michael Nasse, UWM engineering graduate students Haihui Pu and Shumao Cui, UWM engineering research associate Ganhua Lu, and Rodney Ruoff of the University of Texas at Austin.

Monday, December 19, 2011

Vacuum Electronics Serve As Terahertz Power Source




http://www.mwrf.com/Article/ArticleID/23810/23810.html
Capabilities have greatly advanced for vacuum-electronic-device (VED) sources of terahertz and near-terahertz coherent radiation—both continuous wave (CW) and pulsed sources. Quantum-theory models of some terahertz VEDs have been developed and used with some success. Yet all terahertz VEDs can be explained with purely classical models, which is the approach taken by the following group of researchers: John H. Booske from the University of Wisconsin; Richard J. Dobbs from CPI Canada; Colin D. Joye from the US Naval Research Laboratory; Carol L. Kory from Teraphysics, Inc.; George R. Neil with the Thomas Jefferson National Accelerator Facility; Gun-Sik Park with Seoul National University; Jaehun Park from Korea’s Pohang University of Science and Technology; and Richard J. Temkin from the Massachusetts Institute of Technology.
For high-power devices needing to generate high-power electron currents in particular, the vacuum is an ideal propagation medium. VEDs do have tradeoffs, though. These include the need for a three-dimensional (3D), vacuum-tight enclosure.
The researchers note that terahertz devices based on VED technology cover a total bandwidth exceeding 10.0 THz. Terahertz-device choices can be roughly broken down into three classes. Compact sources with high mobility include backwards-wave oscillators (BWOs). They range from 0.1 to 1.0 THz with 10T-3 through 103 W (CW and pulsed) output power. Another option is compact gyrotons with moderate mobility, which cover 0.1 to 1.0 THz with 10-3 through 106 W (CW and pulsed) output power. Stationary accelerator-based sources, including free electron lasers (FELs), range from 0.2 to 10.0 THz and beyond with 10 through 109 W (average and pulsed) output power. See “Vacuum Electronic High Power Terahertz Sources,” IEEE Transactions On Terahertz Science And Technology, Sept. 2011, p. 54.