https://www.nature.com/articles/s41598-017-01781-6
A planar terahertz metamaterial sensor consisting of a corrugated metal stripe perforated by three rectangular grooves is proposed and investigated numerically. Due to the formation of Fabry-Perot resonance of the spoof surface plasmons mode on the corrugated metal stripe, the extremely sharp resonance in transmission spectrum associated with strong local field enhancement and high quality factor can be realized and exploited for ultrasensitive sensing. Since the intense interaction between electromagnetic waves and analyte materials, the frequency sensitivity of 1.966 THz per refractive index unit and the figure of merit of 19.86 can be achieved. Meanwhile, the film thickness sensitivity of this metamaterial sensor is higher than 52.5 GHz/μm when the analyte thickness is thinner than 4 μm. More interestingly, we find that the metal thickness has a great effect on the sensor performance. These findings open up opportunities for planar metamaterial structures to be developed into practical sensors in terahertz regime.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment