Thursday, March 25, 2021

Abstract-Quantum-inspired terahertz spectroscopy with visible photons

 

Mirco Kutas, Björn Haase, Jens Klier, Daniel Molter, and Georg von Freymann

Experimental setup. The 1 mm long PPLN crystals are pumped by a continuous-wave laser with a wavelength of 660 nm, generating correlated pairs of signal and terahertz photons. After the crystal the terahertz radiation is separated by an OAP with a through hole and afterwards reflected at a moveable mirror Mi. Pump and generated signal photons are reflected at Ms directly back into the crystal. After the second pass the pump radiation is filtered from the signal radiation by three volume Bragg gratings (VBGs). To obtain a frequency-angular spectrum on the sCMOS camera, the signal radiation is focused through a transmission grating (TG).


https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-8-4-438&id=449480

Terahertz technology offers solutions in nondestructive testing and spectroscopy for many scientific and industrial applications. While direct detection of photons in this frequency range is difficult to achieve, quantum optics provides a highly attractive alternative: it enables the characterization of materials in hardly accessible spectral ranges by measuring easily detectable photons of a different spectral range. Here we report on the application of this principle to terahertz spectroscopy, measuring absorption features of chemicals at sub-terahertz frequencies by detecting visible photons. To generate the needed correlated signal-idler photon pairs, a periodically poled lithium niobate crystal and a 660 nm continuous-wave pump source are used. After propagating through a single-crystal nonlinear interferometer, the pump photons are filtered by narrowband volume Bragg gratings. An uncooled scientific CMOS camera detects the frequency-angular spectra of the remaining visible signal and reveals terahertz-spectral information. Neither cooled detectors nor expensive pulsed lasers for coherent detection are required.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

No comments: