A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Thursday, February 20, 2020
Abstract-Terahertz Hollow Core Antiresonant Fiber with Metamaterial Cladding
Jakeya Sultana, Md. Saiful Islam, Cristiano M. B. Cordeiro, Alex Dinovitser, Mayank Kaushik, Brian W.-H. Ng, Derek Abbott,
file:///C:/Users/Randy/Downloads/fibers-08-00014.pdf
A hollow core antiresonant photonic crystal fiber (HC-ARPCF) with metal inclusions is numerically analyzed for transmission of terahertz (THz) waves. The propagation of fundamental and higher order modes are investigated and the results are compared with conventional dielectric antiresonant (AR) fiber designs. Simulation results show that broadband terahertz radiation can be guided with six times lower loss in such hollow core fibers with metallic inclusions, compared to tube lattice fiber, covering a single mode bandwidth (BW) of 700 GHz.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment