Tuesday, March 26, 2019

Abstract-Multi-Way Quasi-Optical Waveguide Power Divider with 2D Diffraction Approximation and Experimental Verification at Millimeter Wave



    Fan Zhang, Kaijun Song, Yong Fan,
https://link.springer.com/article/10.1007/s10762-019-00576-2

In this paper, multi-way quasi-optical parallel-plate waveguide power dividers/combiners are designed and fabricated using the 2D diffraction approximation. Shape optimization technology is applied to shape the cylindrical reflector surface to reconstruct the diffraction field to improve the magnitude and phase balance of the parallel-plate waveguide power dividers. Both a 1-to-6 way quasi-optical waveguide power divider with H-plane horn antenna array and a 1-to-10 way power divider with gap waveguide transition are analyzed and designed, respectively. We fabricated the two designed power devices at millimeter wave for verifying the validity of the design method. The measured average transmission coefficient of the 1-to-6 way power divider is − 10.8 dB from 81 to 110 GHz, corresponding to 50% power combining efficiency, while the measured back-to-back structure of the 1-to-10 way power divider/combiner features an average transmission coefficient to − 2.83 dB corresponding to 72.2% power combining efficiency over the entire W-band. The proposed power dividers/combiners and the efficient optimization method used in their design are believed to be of importance for future power device applications in millimeter wave and terahertz range.

No comments: