In this paper, the problem of associating reconfigurable intelligent surfaces (RISs) to virtual reality (VR) users is studied for a wireless VR network. In particular, this problem is considered within a cellular network that employs terahertz (THz) operated RISs acting as base stations. To provide a seamless VR experience, high data rates and reliable low latency need to be continuously guaranteed. To address these challenges, a novel risk-based framework based on the entropic value-at-risk is proposed for rate optimization and reliability performance. Furthermore, a Lyapunov optimization technique is used to reformulate the problem as a linear weighted function, while ensuring that higher order statistics of the queue length are maintained under a threshold. To address this problem, given the stochastic nature of the channel, a policy-based reinforcement learning (RL) algorithm is proposed. Since the state space is extremely large, the policy is learned through a deep-RL algorithm. In particular, a recurrent neural network (RNN) RL framework is proposed to capture the dynamic channel behavior and improve the speed of conventional RL policy-search algorithms. Simulation results demonstrate that the maximal queue length resulting from the proposed approach is only within 1% of the optimal solution. The results show a high accuracy and fast convergence for the RNN with a validation accuracy of 91.92%
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Tuesday, February 25, 2020
Abstract-Risk-Based Optimization of Virtual Reality over Terahertz Reconfigurable Intelligent Surfaces
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment