A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, February 29, 2020
Abstract-Excitons in 2D perovskites for ultrafast terahertz photonic devices
Abhishek Kumar, Ankur Solanki, Manukumara Manjappa, Sankaran Ramesh, Yogesh Kumar Srivastava, Piyush Agarwal, Tze Chien Sum. Ranjan Singh
https://advances.sciencemag.org/content/6/8/eaax8821
In recent years, two-dimensional (2D) Ruddlesden-Popper perovskites have emerged as promising candidates for environmentally stable solar cells, highly efficient light-emitting diodes, and resistive memory devices. The remarkable existence of self-assembled quantum well (QW) structures in solution-processed 2D perovskites offers a diverse range of optoelectronic properties, which remain largely unexplored. Here, we experimentally observe ultrafast relaxation of free carriers in 20 ps due to the quantum confinement of free carriers in a self-assembled QW structures that form excitons. Furthermore, hybridizing the 2D perovskites with metamaterials on a rigid and a flexible substrate enables modulation of terahertz fields at 50-GHz modulating speed, which is the fastest for a solution-processed semiconductor-based photonic device. Hence, an exciton-based ultrafast response of 2D perovskites opens up large avenues for a wide range of scalable dynamic photonic devices with potential applications in flexible photonics, ultrafast wavefront control, and short-range wireless terahertz communications.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment