Monday, September 23, 2019

Abstract-Terahertz Quantum Sensing


Mirco KutasBjörn HaasePatricia BickertFelix RiexingerDaniel MolterGeorg von Freymann

https://arxiv.org/abs/1909.06855

Quantum sensing is highly attractive for accessing spectral regions in which the detection of photons is technically challenging: sample information is gained in the spectral region of interest and transferred via entanglement into another spectral range, for which highly sensitive detectors are available. This is especially beneficial for terahertz radiation, as the corresponding photon energy lies in the range of a few meV - an energy where no semiconductor detectors are available and coherent detection schemes or cryogenically cooled bolometers have to be employed. Here, we report on the first demonstration of quantum sensing in the terahertz frequency range in which the terahertz photons interact with a sample in free space and information about the sample thickness is obtained by the detection of visible photons. A nonlinear single-crystal interferometer setup with a periodically poled lithium niobate crystal (PPLN) and a 660 nm pump source is used, generating visible (signal) photons and associated (idler) photons in the terahertz frequency range. Separation from the pump photons and detection of the visible signal photons is achieved by using highly efficient and narrowband volume Bragg gratings and an uncooled scientific complementary metal-oxide-semiconductor (sCMOS) camera. The acquired frequency-angular spectra show quantum interference in the Stokes as well as the Anti-Stokes part of collinear forward generation caused by spontaneous parametric down-conversion (SPDC) and down-conversion as well as up-conversion of thermal photons. The information encoded in the quantum interference can be used to determine the thickness of coatings or functional layers that are mainly transparent in the terahertz spectral range. As a first demonstration, we show layer thickness measurements with terahertz photons based on induced coherence without induced emission.

No comments: