Saturday, April 20, 2019

Abstract-Design and fabrication of 3-D printed conductive polymer structures for THz polarization control



A. I. Hernandez-Serrano, Qiushuo Sun, Elizabeth G. Bishop, Elliott R. Griffiths, Christopher P. Purssell, Simon J. Leigh, J. Lloyd-Hughes, and Emma Pickwell-MacPherson


Fig. 1 (a) Diagram of the proposed polarizer; (b) Photograph of the printed devices; (c) and (d) show the refractive index and absorption coefficient of CPLA, respectively.

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-8-11635

In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly.
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

No comments: