I. Thiele, B. Zhou, A. Nguyen, E. Smetanina, R. Nuter, K. J. Kaltenecker, P. González de Alaiza Martínez, J. Déchard, L. Bergé, P. U. Jepsen, and S. Skupin
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-12-1617
We disclose an unanticipated link between plasmonics and nonlinear frequency down-conversion in laser-induced gas-plasmas. For two-color femtosecond pump pulses, a plasmonic resonance is shown to broaden the terahertz emission spectra significantly. We identify the resonance as a leaky mode, which contributes to the emission spectra whenever electrons are excited along a direction where the plasma size is smaller than the plasma wavelength. As a direct consequence, such resonances can be controlled by changing the polarization properties of elliptically shaped driving laser pulses. Both experimental results and 3D Maxwell consistent simulations confirm that a significant terahertz pulse shortening and spectral broadening can be achieved by exploiting the transverse driving laser beam shape as an additional degree of freedom.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
No comments:
Post a Comment