Zhengze Chenga, Yongzhi Cheng,
https://www.sciencedirect.com/science/article/abs/pii/S0030401818309908
In this paper, a multi-functional polarization convertor for terahertz (THz) light composed of a bilayer wire-split-ring (WSR) structure chiral metamaterial (CMM) was proposed and investigated numerically. Simulation results indicate that when normal incident light is propagating along the – z axis direction through the proposed CMM structure, the y-polarization is converted to the left- and right-circular polarization (LCP and RCP) at 1.14 THz and 1.34 THz, respectively. Meanwhile, the x-polarization is converted to y-polarization in the frequency range of 2.19 – 2.47 THz. The further calculation results show that the proposed CMM structure can transmit a nearly pure circular polarization light with a polarization extinction ratio (PER) of over 30 dB and an orthogonal linear polarization light with a polarization conversion ratio (PCR) of over 90%. The mechanism of the polarization conversion properties is illustrated by the simulated electrical field and surface current distribution. Due to its excellent multi-functional polarization conversion properties, the proposed CMM is useful for the development of the integrated THz polarization manipulation devices.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment