A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, September 1, 2018
Abstract-Unraveling Biexciton and Excitonic Excited States from Defect Bound States in Monolayer MoS2
Juhi Pandey, Ajay Soni
https://www.sciencedirect.com/science/article/pii/S0169433218323493
Being direct band gap semiconductor, two-dimensional monolayer (ML) MoS2 has remarkable optical transitions arising from excitons, trions, biexciton and defects mediated bound states. However, experimental realization of biexciton in ML MoS2 has been challenging due to broad spectral feature of exciton. Here, we report on systematic observation of biexciton (AXX ∼ 1.90 eV) along with A- trion ∼ 1.92 eV and ground state exciton A1s ∼ 1.96 eV in ML MoS2 at 4 K, by laser-power and temperature-dependent non-resonant photoluminescence (PL) spectroscopy. At low temperatures the excited state of A exciton has also been observed, A2s ∼ 2.13 eV, which consequently merges in thermal broadening of B excitons, with rise in temperature. With excitation energy and power dependent PL, emission arising from exciton bound to sulfur vacancy (∼1.82 eV) have been distinguished from biexciton. Thus understanding of such excitonic states and biexcitons is useful for future quantum information processing, optoelectronic, photonics and THz applications.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment