A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Sunday, August 19, 2018
Abstract-Complex Dielectric Permittivity of Engineering and 3D-Printing Polymers at Q-Band
Francisco Casado,Nicolás Reyes,Valeria Tapia, Claudio Jarufe, Ricardo Finger, Leonardo Bronfman
https://link.springer.com/article/10.1007/s10762-018-0528-9
We report experimental values of the complex dielectric permittivity of a wide variety of engineering polymers. Measurements were done using the filling waveguide method at Q-band (30–50 GHz), being representative of the values over the millimeter wave regime. This method has a high accuracy, providing excellent wide-bandwidth characterization. Measured samples include the most common engineering materials as polyamide, polyethylene, polytetrafluoroethylene, polyoxymethylene, polylactic acid, phenol formaldehyde resin, polypropylene, polyvinyl chloride, acrylonitrile butadiene styrene, polyphenyle sulfide, and polyether ether ketone. Results are comprehensive and represent an important contribution to the technical literature which lacks of material measurements at these frequencies. Of particular interest are samples of 3D printed materials and high performance polymers, that will probably find new and novel applications in the field of microwave components and antennas for the millimeter wave band.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment