A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Thursday, July 5, 2018
Abstract-Ultrafast nonlinear travel of hot carriers driven by high-field terahertz pulse
Hee Jun Shin, Van Luan Nguyen, Seong Chu Lim, and Joo-Hiuk Son
http://iopscience.iop.org/article/10.1088/1361-6455/aac59a
We aim to generate high-intensity terahertz (THz) electric fields and study nonlinear phenomena in GaAs and graphene to investigate their applications. To obtain a high-efficiency intense THz field, we employ the tilted pump-pulse front technique using a LiNbO3 crystal. With this technique, we obtain a THz field strength of over 300 kV cm−1. We investigate the hot-carrier dynamics in n- and p-type GaAs driven by high-field THz pulses. Although both samples show similar carrier concentrations, the nonlinear THz responses show different trends. Owing to hot-carrier generation, intervalley scattering is dominant in n-type GaAs, and intervalence band scattering is the main cause in p-type GaAs. In addition, we study the hot-carrier dynamics in graphene with the grain-size dependency. Although graphene has the same Fermi level regardless of the grain size, the THz responses are different for large- and small-grained graphene: charged impurity scattering in large-grained graphene and defect scattering in small-grained graphene. From these results, our study provides insights into high-speed electronics applications.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment