A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Sunday, June 3, 2018
Abstract-Ultrasensitive Room‐Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator
Weiwei Tang, Antonio Politano, Cheng Guo, Wanlong, Guo, Changlong Liu, Lin Wang, Xiaoshuang Chen, Wei Lu,
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801786
Despite their huge application capabilities, millimeter‐ and terahertz‐wave photodetectors still face challenges in the detection scheme. Topological insulators (TIs) are predicted to be promising candidates for long‐wavelength photodetection, due to the presence of Dirac fermions in their topologically protected surface states. However, photodetection based on TIs is usually hindered by the large dark current, originating from the mixing of bulk states with topological surface states (TSSs) in most realistic samples of TIs. Here millimeter and terahertz detectors based on a subwavelength metal–TI–metal (MTM) heterostructure are demonstrated. The achieved photoresponse stems from the asymmetric scattering of TSS, driven by the localized surface plasmon‐induced terahertz field, which ultimately produces direct photocarriers beyond the interband limit. The device enables high responsivity in both the self‐powered and bias modes even at room temperature. The achieved responsivity is over 75 A/W, with response time shorter than 60 ms in the self‐powered mode. Remarkably, the responsivity increases by several orders of magnitude in the biased configuration, with the noise‐equivalent power (NEP) of 3.6 × 10−13 W Hz−1/2 and a detectivity of 2.17 × 1011cm Hz−1/2 W−1 at room temperature. The detection performances open a way toward realistic exploitation of TIs for large‐area, real‐time imaging within long‐wavelength optoelectronics.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment