A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Wednesday, September 13, 2017
Abstract-3-D Printed Anti-Reflection Structures for the Terahertz Region
Jarosław Bomba, Jarosław Suszek, Michał Makowski, Artur Sobczyk, Maciej Sypek
https://link.springer.com/article/10.1007%2Fs10762-017-0435-5
Terahertz radiation has a growing number of applications in material characterization, where spectral fingerprinting and diffractive effects are the carriers of information. On the other hand, electromagnetic waves in the range of millimeters exhibit strong unwanted specular reflections, resulting in uncontrolled interferences. This problem is especially disturbing in the goniometric time-domain spectroscopy (TDS) configuration, where angular distribution of the field modified by the sample is altered by unwanted reflections. For this reason, low-cost anti-reflection layers are desired. Here, we present a simple way of designing and manufacturing one-sided and two-sided anti-reflection polyamide layers for the THz range. The structures were fabricated using 3-D printers based on selective laser sintering. We demonstrate experimentally in the goniometric time-domain spectroscopy the significant reduction of wavelength-dependent oscillations in Fabry-Perot configuration in the range between 0.1 and 0.3 THz. We also examine the influence of the anti-reflection layers on the distribution of THz energy in reflected, transmitted, and diffracted fields.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment