The current (voltage) responsivity of a superlattice-based diode detector has been studied theoretically in the terahertz frequency band that includes the region of the polar-optical phononfrequencies. Within the framework of an equivalent circuit approach, the electro-dynamical model which allows one to analyze the responsivity taking into account the hybridization of the plasma and polar-optical phonon modes both in the substrate and in the cladding layers of the diode has been suggested. It has been shown that the presence of the plasma and polar-optical phononmodes gives rise to strong features in the frequency dependence of the responsivity, i.e., to the resonance dips and peaks at frequencies of hybridized plasmons and polar-optical phonons. It has been suggested that by judicious engineering of the superlattice-based diodes, it would be possible to enhance substantially their responsivity in the terahertz frequency band.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment