In the paper a frequency modulated THz system is presented. The system is constructed with a solid state THz source and is modulated approx. ±10% of central frequency of 0.3THz. The detector is room temperature sensor array with a square low characteristic allowing a mixer operation between a portion of transmitted signal from the beam splitter and the received signal. Due to this heterodyne approach a very good signal to noise ratio has been achieved, allowing accurate and repeatable signal analysis. The phase of the received signal is very stable and can be used for fine position measurements with the resolution well below 1μm. In this paper the focus is on measurements of thin foil thickness. Various experiments set-ups and measured results are presented. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, October 19, 2013
Abstract-THz remote sensing with μm resolution
In the paper a frequency modulated THz system is presented. The system is constructed with a solid state THz source and is modulated approx. ±10% of central frequency of 0.3THz. The detector is room temperature sensor array with a square low characteristic allowing a mixer operation between a portion of transmitted signal from the beam splitter and the received signal. Due to this heterodyne approach a very good signal to noise ratio has been achieved, allowing accurate and repeatable signal analysis. The phase of the received signal is very stable and can be used for fine position measurements with the resolution well below 1μm. In this paper the focus is on measurements of thin foil thickness. Various experiments set-ups and measured results are presented. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment