Friday, May 10, 2013

Abstract-Terahertz polarization splitter based on orthogonal microstructure dual-core photonic crystal fiber

A broadband polarization splitter operating in the terahertz (THz) band is proposed based on dual-core photonic crystal fiber with orthogonal microstructure in the core regions. The Index Converse Matching Coupling method is presented to design the THz polarization splitter for the first time, which exhibits several advantages, such as short splitting length, high extinction ratio, low loss, and broad operation bandwidth. By numerical simulation, it has been found that the strong coupling occurs within a frequency range of 0.4–0.7 THz. The operation bandwidth is more than 0.15 THz (equal to 138 μm). The shortest splitting length is only 1.83 cm at 0.4 THz. The extinction ratios for both of x and y polarization are better than 15dB when the frequency is larger than 0.51 THz. The lowest material absorption loss is only 0.34 dB at 0.4 THz. Moreover, this structure is simple to design and easy to fabricate over its counterparts in the communication band. Our research offers an effective method to design a broadband THz device and would be of significance for future relevant applications

© 2013 Optical Society of America

No comments: