In a paper in Nature Nanotechnology, HZB-scientist Ilie Radu and his colleagues from Fritz-Haber-Institut Berlin, Uppsala, Göttingen and Forschungzentrum Jülich demonstrate a simple but very powerful way of manipulating the spins at unprecedented speeds within the so far unexplored THz range (1 THz=1012 Hz). They use a femtosecond laser pulse to photo-excite the spins from a magnetic material to a non-magnetic one that is chosen to either trap or release the electrons carrying the spins. By this method they are able to generate ultrashort spin currents with tailor-made shapes and durations, which are detected using an ‘ultrafast amperemeter’ (based on the Inverse Spin Hall Effect) that converts the spin flow into a terahertz electromagnetic pulse.
These findings will possibly allow us to develop and design novel material with tailor-made characteristics, which might boost the magnetic recording rates of the magnetic bits to unprecedented speeds at THz frequencies.
Source: Helmholtz Association
No comments:
Post a Comment