A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Zhaoxin Geng. Show all posts
Showing posts with label Zhaoxin Geng. Show all posts
Tuesday, July 10, 2018
Abstract-Theoretical study of terahertz active transmission line oscillator based on RTD-gated HEMT
Xurui Mao, Sheng Xie, Changju Zhu, Zhaoxin Geng, Hongda Chen.
In this paper, a new kind of terahertz oscillator is presented using plasma wave excitation in a resonant tunnel diode (RTD) gated high electron mobility transistor (HEMT). The plasma wave arising from the RTD-gated HEMT is equivalent to active transmission lines and induces negative differential conductance (NDC) of the oscillator. The proposed RTD-gated HEMT oscillator is more compact and has higher oscillation frequency than the transmission line loaded traditional RTD oscillator duo to plasma wave effect. This paper analyses and calculates the oscillation conditions, the relationships between device structures, oscillation frequency and the output power of the oscillator. The presented work may provide a new concept for fabricating terahertz oscillator.
Sunday, November 5, 2017
Abstract-Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet
https://www.nature.com/articles/s41598-017-13864-5?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+srep%2Frss%2Fcurrent+%28Scientific+Reports%29
The terahertz (THz) modulator, which will be applied in next-generation wireless communication, is a key device in a THz communication system. Current THz modulators based on traditional semiconductors and metamaterials have limited modulation depth or modulation range. Therefore, a THz modulator based on annealed tungsten disulfide (WS2, p-type) and high-resistivity silicon (n-type) is demonstrated. Pumped by a laser, the modulator presents a laser power-dependent modulation effect. Ranging from 0.25 to 2 THz, the modulation depth reaches 99% when the pumping laser is 2.59 W/cm2. The modulator works because the p-n heterojunction can separate and limit carriers to change the conductivity of the device, which results in a modulation of the THz wave. The wide band gap of WS2 can promote the separation and limitation of carriers to obtain a larger modulation depth, which provides a new direction for choosing new materials and new structures to fabricate a better THz modulator.
Thursday, March 10, 2016
Abstract-Optically tuned terahertz modulator based on annealed multilayer MoS2
- Scientific Reports 6, Article number: 22899
- http://www.nature.com/articles/srep22899
Subscribe to:
Posts (Atom)