Showing posts with label Thomas Zwick. Show all posts
Showing posts with label Thomas Zwick. Show all posts

Thursday, February 28, 2019

Printed radar technology


KIT research laboratory will develop digital manufacturing technologies for terahertz microelectronics -- funding by BMBF
KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)
The KIT Research Laboratory develops new assembly and connection techniques for highest-frequency electronics CREDIT Joachim Hebeler, KIT
https://www.eurekalert.org/multimedia/pub/194103.php

Parking a car with the help of radar sensors already is commonplace. Many other applications of radar technology are obvious, such as precise distance and environment sensors for robots and machines in the industrial automation sector or high-performance transmitters and receivers in telecommunications. Concrete application scenarios, however, are highly individual, the number of pieces is small, and manufacturing costs are very high. This is the point of departure of the new DiFeMiS Research Laboratory at Karlsruhe Institute of Technology (KIT). It is to develop print technologies for individual, small, and inexpensive high-frequency systems up to the terahertz range (THz). The Laboratory is funded by the Federal Ministry of Education and Research (BMBF) with about EUR 3.37 million.
When thinking of electronics, we mostly think of components on a green circuit board. But this carrier of electric components is suited for circuits working at frequencies far below 100 GHz only. At higher frequencies, boards are mainly produced by lithographic processes optimized for mass production. For medium batches of up to 10,000 products typically produced by small and medium-sized enterprises (SME), fabrication of an exposure mask for lithography is too expensive. Latest additive processes and precision printing technology might close this gap between individual and mass production.
"The core component of the planned Research Laboratory is a configurable, micrometer-precise printing platform for future highly flexible and inexpensive packaging," says Professor Thomas Zwick, who heads KIT's Institute of Radio Frequency Engineering and Electronics. Packaging or assembly and connection technology refers to all microchip-supporting components on a circuit board, from the conducting wire to the antenna. Packaging largely depends on the application, as far as the size and orientation of antennas are concerned, for instance. Hence, mass-produced off-the-shelf solutions are hardly suited. "At very high frequencies up to the terahertz range, radar technology is suited for many applications, as the high frequency enables increased measurement accuracy, higher data transmission rates, and further miniaturization."
The Research Laboratory at KIT combines systems for additive and mask-less deposition and structuring methods in a flexible printing platform. Special measurement systems can be applied to determine the frequency behavior of components and systems at more than 500 GHz. To print electric circuits, several methods are available. Here, materials with various electric properties are applied as inks. These methods are two-dimensional, such ink-jet and aerosol-jet printing, or three-dimensional, such as laser lithography. For circuits above a frequency of 100 GHz, resolution has to be increased and complementary properties have to be combined. The big challenge lies in the exact positioning of components. For this purpose, printing processes are to be adjusted with micrometer precision, such that optimum collaboration of components from different printers is ensured and circuits are kept as small as possible.
SME might use digital manufacturing processes for inexpensive assembly and connection techniques at frequencies above 100 GHz in order to develop a large number of sensor applications for Industry 4.0 and robotics. Here, many measurement tasks have to be carried out, from simple distance measurements to complex imaging. Thanks to their good resolution, high accuracy, small size, and high robustness, high-frequency sensors are particularly suited for this purpose. Moreover, emitters and receivers based on high-frequency systems might be applied in telecommunications. Digital manufacturing might enable customized, integrated, and inexpensive production.
At KIT's Research Laboratory, three research groups of Professors Thomas Zwick, Ulrich Lemmer, and Christian Koos from the Institute of Radio Frequency Engineering and Electronics, Light Technology Institute, and Institute of Photonics and Quantum Electronics are involved in DiFeMiS (German acronym of digital manufacture of THz microelectronics systems). The newly established chair of Ahmet Cagri Ulusoy at the Institute of Radio Frequency Engineering and Electronics is to join the project in the near future. The Laboratory will be funded by the Federal Ministry of Education and Research (BMBF) under the program "Microelectronics Research Laboratories in Germany" with EUR 3.37 million for a period of three years. Investments in most modern devices and facilities are to enable research on top international level. The twelve laboratories to be established under this program will open up new areas of research for future microelectronics and be used for training young scientists.
At today's kick-off event, Thomas Rachel, Parliamentary State Secretary with the BMBF, underscored the importance of the research laboratories as an investment in the future. "We want to continue to live a self-determined life in a rapidly changing world. For this, Germany and Europe need to have a strong technological basis. The 'Microelectronics Research Laboratories in Germany' provide an essential contribution. At these laboratories, electronics for the next decades will be developed to maturity and new ideas and know-how will be transferred very quickly to everyday use."
###
Press contact: Kosta Schinarakis, Redakteur/Pressereferent, Tel.: +49 721 608-41956, Fax: +49 721 608-43568, E-Mail: schinarakis@kit.edu

Tuesday, October 15, 2013

German researchers claim 100 Gbps wireless transmission record

By Richard Chirgwin
http://www.theregister.co.uk/2013/10/15/german_researchers_claim_100_gbps_wireless_transmission_record/


German researchers are claiming a world record, using a 237.5 GHz carrier and photonic mixing to achieve a 100 Gbps wireless link.
Don't throw away that WiFi kit just yet, however: while the reach, at 20 metres, is good enough to cover most household applications, the setup is a little bit exotic at this point in the system's development.

If commercialised, however, the researchers hope their 100 Gbps-capable link could act as a fibre extender in FTTN-style deployments, telling Phys.org “this technology represents an inexpensive and flexible alternative to optical fiber networks, whose extension can often not be justified from an economic point of view”.
The signals were generated using a photonic mixer from NTT Electronics, with custom-made receiver silicon built by the Fraunhofer Institute of Applied Solid State Physics.
Using photonics to generate the carrier wave is important, since it's difficult to work with electrical signals at such high frequencies. The photonic mixer took two light signals generated by lasers, with the difference between them resulting in the modulated 237.5 GHz electrical signal.
That was then fed to a conventional antenna for transmission to the receiver.
As the researchers describe the experiment in their Nature Photonics abstract: “a narrow-band terahertz carrier is photonically generated by mixing comb lines of a mode-locked laser in a uni-travelling-carrier photodiode. The uni-travelling-carrier photodiode output is then radiated over a beam-focusing antenna. The signal is received by a millimetre-wave monolithic integrated circuit comprising novel terahertz mixers and amplifiers.”
Professor Jürg Leuthold explained that the linearity and wide bandwidth of the photonic mixer makes it suitable for “advanced modulation formats with multiple amplitude and phase states”, meaning that it also provides good spectral efficiency.

KIT's demonstration setup, showing the receiver connected
to an oscilloscope. Image: KIT
The receiver used HEMT (high electron mobility transistor) technology able to operate between 200 and 280 GHz. Funded by Germany's Federal Ministry of Education and Research, the Millilink project could reach 1 Tbps using multiple transmission paths, according to experiment designer Professor Thomas Zwick from the Karlsruhe Institute of Technology. ®