Showing posts with label T. S. Seifert. Show all posts
Showing posts with label T. S. Seifert. Show all posts

Thursday, July 18, 2019

Abstract-Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

Publisher Logo


 U. Nandi, M. S. Abdelaziz, S. Jaiswal, G. Jakob, O. Gueckstock, S. M. Rouzegar, T. S. Seifert,   M. Kläui, T. Kampfrath,  S. Preu,

Schematic of THz emission from photoexcited FMNM bilayers, plain and microstructured. (a) A femtosecond laser pulse triggers ultrafast spin transport from the FM into the NM layer where the spin current js flowing along the z axis is converted into a charge current jc along the y direction, acting as a source of THz radiation. The direction of the in-plane magnetization of the FM layer is set along the x axis by an external magnetic field Bext. (b) Current distribution in an unstructured (plain) bilayer and (c) the STE bilayer embedded in the gap of an antenna. Note that THz current generation by the ISHE is independent of emitter type and antenna choice.

https://aip.scitation.org/doi/abs/10.1063/1.5089421

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a commercial fiber-coupled system that is frequently employed in table-top THz time-domain systems.

Sunday, February 10, 2019

Abstract-Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer


Publisher Logo
 
R. I. Herapath,  S. M. Hornett,   T. S. Seifert, G. Jakob,  M. Kläui,  J. Bertolotti, T. Kampfrath,  E. Hendry
Schematic of a spintronic trilayer with added dielectric cavity, grown on 0.5 mm of sapphire (Al2O3). The near-infrared pump pulse, incident through the substrate, is partially absorbed in the metallic layers, launching a spin current from the ferromagnetic (FM) layer into the nonmagnetic (NM) layers. The inverse spin Hall effect converts this ultrashort out-of-plane spin current into an in-plane charge current resulting in the emission of THz radiation into the optical far-field. A weak in-plane magnetic field (B) determines the magnetization direction and the linear polarization of the emitted THz field.
https://aip.scitation.org/doi/abs/10.1063/1.5048297

We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic CoFeB layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially flat for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of up to two in field.