Showing posts with label Singapore Institute of Manufacturing Technology. Show all posts
Showing posts with label Singapore Institute of Manufacturing Technology. Show all posts

Thursday, October 15, 2015

Toward Clearer, Cheaper Imaging Of Ultrafast Phenomena


An all-optical, 3-D method of electron pulse compression for applications like ultrafast electron imaging is shown schematically in (a), with a cost-effective implementation depicted in (b). Credit: Liang Jie Wong/ Singapore Institute of Manufacturing Technology and Massachusetts Institute of Technology


http://www.photonicsonline.com/doc/toward-clearer-cheaper-imaging-of-ultrafast-phenomena-0001

Many mysteries of nature are locked up in the world of the very small and the very fast. Chemical reactions and material phase transitions, for example, happen on the scale of atoms — which are about one tenth of one billionth of a meter across — and attoseconds — which are one quintillionth (10^-18) of a second long. A research team from Massachusetts Institute of Technology (MIT), Massachusetts, in collaboration with the Singapore Institute of Manufacturing Technology (SIMTech), Singapore, have proposed a new technique that may help record better images of such ultrafast phenomena. The team will present their work at the Frontiers in Optics, The Optical Society’s annual meeting and conference in San Jose, California, USA, held from 18-22 October 2015.
Ultrafast electron pulses are one tool scientists use to probe the atomic world. When the pulses hit the atoms in a material, the electrons scatter like a wave. By setting up a detector and analyzing the wave interference pattern, scientists can determine information like the distance between atoms. Conventional electron pulse technology uses a static magnetic field to compress the electrons transversely. However, the static field can interfere with the electron source and the sample and lead to temporal distortion of the electron pulses — both of which can lead to lower quality images.
To avoid the problems associated with static field compression the MIT and SIMTech team proposed the first all-optical scheme for compressing electron pulses in three dimensions and demonstrated the viability of the scheme via first-principle numerical simulations. In the scheme, laser pulses, functioning as three-dimensional lenses in both time and space, can compress electron pulses to attosecond durations and sub-micrometer dimensions, providing a new way to generate ultrashort electron pulses for ultrafast imaging of attosecond phenomena.
"Using this scheme, one can compress electron pulses by as much as two to three orders of magnitude in any dimension or dimensions with experimentally achievable laser pulses. This translates, for instance, to reducing the duration of an electron pulse from hundreds of femtoseconds to sub-femtosecond scales," said Liang Jie Wong, the lead researcher on the team, who is now at the Singapore Institute of Manufacturing Technology and was formerly a postdoctoral fellow at the Massachusetts Institute of Technology.
"Notably, the scheme involves no static fields and features independent control of the compression in each dimension," Wong noted.
Compressing Electron Pulses in Time and Space
Short pulse durations are critical for high temporal resolution in ultrafast electron imaging techniques. These techniques can create movies that allow scientists to observe, in real-time, how molecules interact in a chemical reaction, or how the structure of a material or microorganism is affected by the introduction of external stimuli.
To ensure that the electron pulse arrives at the sample or detector with the desired properties in spite of inter-electron repulsion, ultrafast electron imaging setups usually require means to compress the electron pulse both transversely and longitudinally. Conventional methods typically employ static-field elements such as solenoids, which are coils of wire that create uniform magnetic fields, to focus the electron beams. The use of static field elements can lead to the undesirable presence of static magnetic fields on the electron source (cathode) and the sample and can also cause temporal distortions when transporting ultrashort electron pulses.
To solve these problems, Wong's team conceived an all-optical scheme that focuses electron pulses in three dimensions by using a special type of laser mode with an intensity "valley" (or minimum) in its transverse profile, which is technically known as a "Hermite-Gaussian optical mode." The pulsed laser modes successively strike the moving electrons at a slanting angle, fashioning a three-dimensional trap for the electrons.
"To compress the electron pulse along its direction of travel, for instance, the laser-electron interaction accelerates the back electrons and decelerates the front electrons. As the electrons propagate, the back electrons catch up with the front electrons, leading to temporal compression of the electron pulse," Wong explained. The force that the optical field exerts on the electrons is called the optical ponderomotive force, a time-averaged force that pushes charged particles in a time-varying field towards regions of lower intensity.
"Just as conventional lenses can be used to focus a light beam, our configuration can be used to focus an electron beam. In our case, however, we can perform the focusing not only in the dimensions perpendicular to the direction of travel, but also in the dimension parallel to the direction of travel. Hence, the entire setup can be seen as a spatiotemporal lens for electrons," Wong said.
By modeling the fields with exact solutions of Maxwell equations and solving the Newton-Lorentz equation, which together describe classical optical and electromagnetic behavior, Wong and his collaborators have analytically and numerically demonstrated the viability of their scheme. Among their findings is the fact that the longitudinal compression is sensitive to the laser pulse incidence angle, which is a function of the electron pulse velocity for optimal performance.
A major cost-saving feature in the proposed scheme is the fact that a single optical pulse can be used to implement a succession of compression stages. Since the scheme allows laser pulses to be recycled for further compression of the same electron pulse (not restricted to the same dimension), one is able to maximize the use of a single laser pulse and to achieve 3D compression with that single pulse.
Besides being of great interest in ultrafast electron imaging for compressing both single- and multi-electron pulses, the proposed scheme is potentially useful for focusing other particles such as accelerated protons and neutral atoms. Broader applications include the creation of flat electron beams and the creation of ultrashort electron bunches for coherent terahertz emission in free-electron based terahertz generation schemes, which in turn has a wide range of applications from biomedical imaging to airport security.
The next step for the research team is to present a proof-of-concept experimental realization of this scheme.
About the Presentation
The presentation, “Temporal Lenses for Three-Dimensional Electron Pulse Compression,” by Liang Jie Wong, will begin at 17:00, Thursday, 22 October 2015, in The Fairmont Hotel, San Jose, California, USA.

Thursday, January 30, 2014

TERAHERTZ SOURCES: Concentric-grating terahertz QCLs five times more powerful than ridge QCLs


Quantum-cascade lasers (QCLs) operating in the terahertz region of the electromagnetic spectrum are in demand for numerous spectroscopy, communications, and imaging applications; however, ridge-waveguide-based terahertz QCLs with the commonly adopted metal-metal waveguide configuration suffer from a relatively low output power and a large beam divergence of approximately 180º as well as multimode operation. While smaller divergence angles on the order of 10º are possible using external or integrated optics, low output power and multimode operation persist.
An alternative terahertz QCL developed by researchers at Nanyang Technological University (NTU) and the Singapore Institute of Manufacturing Technology (both in Singapore), as well as the University of Leeds (Leeds, England), Hong Kong Polytechnic University (Kowloon, Hong Kong), and Shanghai Jiao Tong University (Shanghai, China) takes advantage of the circular symmetry of concentric circular gratings (CCGs) to develop vertical-emission QCLs with low divergence that are five times more powerful than their ridge-waveguide QCL counterparts.1
Circular symmetry
Through numerical simulations using a commercial COMSOL (Burlington, MA) finite-element analysis tool, the research team developed an optimized concentric circular grating (CCG) using a two-dimensional (2D) partial-differential-equation mode in the COMSOL software. The modeling step takes the mode profile of vertical emission into account, producing a device optimized for terahertz operation at approximately 3.75 THz with a laser-gain medium sandwiched between the CCG at the top and a lower metal plate at the bottom. The optimal parameters of the CCG for maximum emission from theterahertz grating-based laser were an outer ring thickness of 16.2 μm and a total ring diameter of 356.7 μm with carefully engineered slots in each ring.
The concentric rings of the optimized metal-based CCG are electrically connected together via a three-spoke structure so that the entire gain medium below the CCG can be electrically pumped (see figure). The laser gain medium was fabricated using molecular beam epitaxy with a gallium arsenide/aluminum gallium arsenide (GaAs/Al0.15Ga0.85As) structure. The CCG structures were defined by standard optical lithography and liftoff, and the final active region was wet-etched into the circular form.
Scanning electron microscope (SEM) image shows the fabricated concentric circular grating (CCG) terahertz quantum-cascade laser (QCL)
A scanning electron microscope (SEM) image shows the fabricated concentric circular grating (CCG) terahertz quantum-cascade laser (QCL); the yellow color highlights the gold layers and the concentric rings allow electrical pumping of the whole grating. The dual-lobed far-field emission is typical of a CCG terahertz QCL. (Courtesy of NTU)
Experimental analysis of the CCG terahertz QCLs showed operation up to 110 K compared to 130 K for conventional ridge-waveguide QCLs. However, the CCG QCLs exhibited stable single-mode operation (rather than multimode), at peak power levels of tens of milliwatts—around 5X higher than for comparably sized ridge-waveguide QCLs.
The far-field pattern of the CCG QCLs was a dual-lobed 13.5º × 7º shape due to boundary deformation of the active region occurring during anisotropic wet chemical etching for the circular fabrication portion of the process. Using an isotropic etching technique (like plasmon etching) could avoid this boundary-deformation problem.
“This approach opens up new opportunities in achieving functional beam control such as polarization control, beam steering, and special beams, while holding the single-mode operation simultaneously,” says NTU assistant professor Wang Qijie, lead author of this work. “The design is also simple by taking advantage of the circular symmetry, which is easily implemented.”
“In the near future, we aim to realize ring-shaped and radially polarized light emission by removing the laser boundary deformation,” says NTU Ph.D. student Liang Guozhen. “Such emission is highly desirable for efficient coupling when launching terahertz waves into a terahertz metal-wire waveguide or the metallic tip of a terahertz near-field imaging system. In addition, one can also achieve a narrower single-lobed far-field pattern by further optimizing the CCG structure.”
REFERENCE
1. G. Liang et al., Opt. Exp., 21, 26, 31872–31882 (2013).