Showing posts with label Nosrat Granpayeh. Show all posts
Showing posts with label Nosrat Granpayeh. Show all posts

Thursday, May 28, 2020

Abstract-Controllable terahertz cross-shaped three-dimensional graphene intrinsically chiral metastructure and its biosensing application



Author links open overlay panelSomayyeh AsgariNosrat GranpayehTapio Fabritius



In this research, a three-dimensional (3D) graphene intrinsically chiral metastructure in terahertz (THz) region was proposed and analyzed. The unit cell consists of bi-layer cross-shaped graphene ribbons in which the back layer is rotated compared to the front layer. Parameter retrieval method and Kramers-Kronig relations are used for theoretical analysis and derivation of the right-handed and left-handed electromagnetic effective refractive indices of the proposed structure. Based on our analysis, the proposed meta-structure has a tunable and controllable chiral response due to the tunability of graphene and circular dichroism (CD) was reached to 0.2. In order to evaluate the performance of the THz device in biosensor application, its characteristics in chiral biomolecule (collagen) sensing was analyzed. With an optimum design, our simulations show that the refractive index sensitivity value can be obtained as high as 0.96 THz per refractive index unit (THz/RIU) for the CD spectra. Proposed graphene chiral metastructure is promising enabler for controllable polarization-sensitive devices and systems such as tunable polarization filters, rotators, polarizers, biosensors, phase shifters, operating in the THz region.

Saturday, February 24, 2018

Abstract-Near-infrared absorbers based on the heterostructures of two-dimensional materials



Fatemeh Davoodi and Nosrat Granpayeh

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-57-6-1358


Although the conductance and dielectric function of graphene can be tuned by applying external voltage, the tunability is less than 3%. Hybridizing graphene with other two-dimensional transition metal dichalcogenides (TMDs) can improve the adjustability and tunability of the optical properties of graphene-based structures at near-infrared frequencies. In this paper, we theoretically compute the dielectric function of graphene--graphene and graphene--graphene heterostructures utilizing the quantum electrostatic heterostructure (QEH) model, which is an ab-initio method. Utilizing the QEH results, we propose a hyper crystal (HC) absorber at near-infrared frequencies. Hence, we use the transfer matrix method to investigate our proposed absorber analytically. Moreover, we simulate the graphene-TMD-graphene (G-TMD-G) absorbers by the numerical finite difference time domain method. The results of the numerical solution are consistent with those of the analytical method. Due to the dependency of the Fermi level of graphene on the direct bandgap of the TMDs, the dielectric function of the G-TMD-G heterostructure can be tuned and enhanced further by changing the number of TMD layers. Finally, we demonstrate that the full absorption of the heterostructures can be achieved at different frequencies for transverse magnetic polarization. Since the thicknesses of the layers in the HC are lower than the wavelength of the light, no diffracted bands are ubiquitous, and the absorption can be observed for a wide range of incidence angles and bandwidths at near-infrared frequencies. Because of utilizing graphene-based HCs, in addition to the feasibility of design compared to the complex metasurfaces, the absorption bandwidth is significant for a wide range of incidence angles. This kind of HC absorber can be used in the design of sensitive optical devices, such as tunable filters, detectors, and photovoltaic applications.
© 2018 Optical Society of America

Thursday, April 6, 2017

Abstract-Wideband and multi-frequency infrared cloaking of spherical objects by using the graphene-based metasurface




Elnaz Shokati, Nosrat Granpayeh, and Mohammad Danaeifar

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-11-3053

The ultrathin graphene metasurface is proposed as a mantle cloak to achieve wideband tunable scattering reduction around the spherical (three-dimensional) objects. The cloaking shell over the metallic or dielectric sphere is structured by a periodic array of graphene nanodisks that operate at infrared frequencies. By using the polarizability of the graphene nanodisks and equivalent conductivity method, the metasurface reactance is obtained. To achieve the cloaking shell for both dielectric and conducting spheres, the metasurface reactance as a function of nanodisks dimensions, graphene’s Fermi energy, and permittivity of the surrounding areas can be tuned from the inductive to capacitive situation. Inhomogeneous metasurfaces including graphene nanodisks with different radii provide wideband invisibility due to extra resonances. We could significantly increase the 3-dB bandwidth more than the homogenous case by simpler realistic designs compared to the multi-layer structures. The analytical results are confirmed with full-wave numerical simulations.
© 2017 Optical Society of America