Showing posts with label Ning Wang. Show all posts
Showing posts with label Ning Wang. Show all posts

Monday, December 9, 2019

Abstract-Plasmonic heterodyne spectrometry for resolving the spectral signatures of ammonia over a 1-4.5 THz frequency range




Yen-Ju Lin, Semih Cakmakyapan, Ning Wang, Daniel Lee, Mitchell Spearrin, and Mona Jarrahi
 Schematic diagram of the terahertz spectrometry setup.

https://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-25-36838

We present a heterodyne terahertz spectrometry platform based on plasmonic photomixing, which enables the resolution of narrow spectral signatures of gases over a broad terahertz frequency range. This plasmonic heterodyne spectrometer replaces the terahertz mixer and local oscillator of conventional heterodyne spectrometers with a plasmonic photomixer and a heterodyning optical pump beam, respectively. The heterodyning optical pump beam is formed by two continuous-wave, wavelength-tunable lasers with a broadly tunable terahertz beat frequency. This broadly tunable terahertz beat frequency enables spectrometry over a broad bandwidth, which is not restricted by the bandwidth limitations of conventional terahertz mixers and local oscillators. We use this plasmonic heterodyne spectrometry platform to resolve the spectral signatures of ammonia over a 1-4.5 THz frequency range.
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Thursday, July 11, 2019

Abstract-Room-temperature heterodyne terahertz detection with quantum-level sensitivity



Ning Wang, Semih Cakmakyapan, Yen-Ju Lin, Hamid Javadi,  Mona Jarrahi,

         Fig. 1: Principles of heterodyne terahertz detection through plasmonic photomixing.

https://www.nature.com/articles/s41550-019-0828-6

Our Universe is most radiant at terahertz frequencies (0.1–10.0 THz), providing critical information on the formation of the planets, stars and galaxies, as well as the atmospheric constituents of the planets, their moons, comets and asteroids. The detection of faint fluxes of photons at terahertz frequencies is crucial for many planetary, cosmological and astrophysical studies. For example, understanding the physics and molecular chemistry of the life cycle of stars and their relationship with the interstellar medium in galaxies requires heterodyne detectors with noise temperatures close to the quantum limit. Near-quantum-limited heterodyne terahertz detection has so far been possible only through the use of cryogenically cooled superconducting mixers as frequency downconverters. Here we introduce a heterodyne terahertz detection scheme that uses plasmonic photomixing for frequency downconversion to offer quantum-level sensitivities at room temperature. Frequency downconversion is achieved by mixing terahertz radiation and a heterodyning optical beam with a terahertz beat frequency in a plasmonics-enhanced semiconductor active region. We demonstrate terahertz detection sensitivities down to three times the quantum limit at room temperature. With a versatile design capable of broadband operation over a 0.1–5.0 THz bandwidth, this plasmonic photomixer has broad applicability to astronomy, cosmology, atmospheric studies, gas sensing and quantum optics.

Tuesday, July 9, 2019

Light-sensing system could show distant galaxies in unprecedented detail


Ning Wang, the study’s lead author, and Professor Mona Jarrahi working on the terahertz detector setup.
http://newsroom.ucla.edu/releases/light-sensing-distant-galaxies-unprecedented-detail
Matthew Chin 

Researchers at the UCLA Samueli School of Engineering have developed an ultra-sensitive light-detecting system that could enable astronomers to view galaxies, stars and planetary systems in superb detail.
The system works at room temperature — an improvement over similar technology that only works in temperatures nearing 270 degrees below zero Celsius, or minus 454 degrees Fahrenheit. A paper detailing the advance is published today in Nature Astronomy.
The sensor system detects radiation in the terahertz band of the electromagnetic spectrum, which includes parts of the far-infrared and microwave frequencies.
The system produces images in ultra-high clarity, and it can detect terahertz waves across a broad spectral range — an improvement of at least 10 times more than current technologies that only detect such waves in a narrow spectral range. Its broad range capabilities could allow it to do observations that currently require several different instruments. It identifies what elements and molecules — for example, water, oxygen, carbon monoxide and other organic molecules, are present in those regions of space by seeing if their individual telltale spectral signatures are present.
“Looking in terahertz frequencies allows us to see details that we can’t see in other parts of the spectrum,” said Mona Jarrahi, a UCLA professor of electrical and computer engineering who led the research. “In astronomy, the advantage of the terahertz range is that, unlike infrared and visible light, terahertz waves are not obscured by interstellar gas and dust that surround these astronomical structures.”
The technology could be especially effective in space-based observatories, Jarrahi said, because unlike on Earth, terahertz waves can be detected without interference from the atmosphere.
The system could help scientists glean new insights into the composition of astronomical objects and structures and into the physics of how they form and die. It could also help answer questions about how they interact with the gases, dust and radiation that exists between stars and galaxies, and it could reveal clues about the cosmic origins of water or organic molecules that could indicate whether a planet is hospitable to life.
The system could also be used on Earth, to detect harmful gases for security or environmental monitoring purposes.
The key to the new system is how it converts incoming terahertz signals, which are not easy to sense and analyze with standard scientific equipment, into radio waves that are easy to handle.
Existing systems use superconducting materials to translate terahertz signals to radio waves. But to work, those systems use specialized liquid coolant to keep those materials at extremely low temperatures, approaching absolute zero. Supercooling the equipment is feasible on Earth, but when the sensors are taken on spacecraft, their lifespans are limited by the amount of coolant aboard. Also, because spacecrafts’ weight is so important, it can be problematic to carry the extra pounds of coolant the equipment needs.
The UCLA researchers created a new technology to address the coolant and related weight issues. Their device uses a beam of light to interact with the terahertz signals inside a semiconductor material with metallic nanostructures. The system then converts the incoming terahertz signal into radio waves, which are read by the system and can be interpreted by astrophysicists.
The study’s lead authors are Ning Wang, who earned a doctorate from UCLA, and Semih Cakmakyapan, a former postdoctoral scholar at UCLA, both of whom were members of Jarrahi’s research group. Other authors are UCLA graduate student Yen-Ju Lin and Hamid Javadi, a scientist at the NASA Jet Propulsion Laboratory.
The study was supported by JPL’s Strategic University Research Partnership program, the U.S. Department of Energy, the Office of Naval Research and the National Science Foundation.

Sunday, August 26, 2018

Abstract-Dual-model analysis for improving the discrimination performance of human and nonhuman blood based on Raman spectroscopy



Haiyi Bian, Peng Wang, Ning Wang, Yubing Tian, Pengli Bai, Haowen Jiang, and Jing Gao

https://www.osapublishing.org/boe/abstract.cfm?uri=boe-9-8-3512

The discrimination accuracy for human and nonhuman blood is important for customs inspection and forensic applications. Recently, Raman spectroscopy has shown effectiveness in analyzing blood droplets and stains with an excitation wavelength of 785 nm. However, the discrimination of liquid whole blood in a vacuum blood tube using Raman spectroscopy, which is a form of noncontact and nondestructive detection, has not been achieved. An excitation wavelength of 532 nm was chosen to avoid the fluorescent background of the blood tube, at the cost of reduced spectroscopic information and discrimination accuracy. To improve the accuracy and true positive rate (TPR) for human blood, a dual-model analysis method is proposed. First, model 1 was used to discriminate human-unlike nonhuman blood. Model 2 was then used to discriminate human-like nonhuman blood from the “human blood” obtained by model 1. A total of 332 Raman spectra from 10 species were used to build and validate the model. A blind test and external validation demonstrated the effectiveness of the model. Compared with the results obtained by the single partial least-squares model, the discrimination performance was improved. The total accuracy and TPR, which are highly important for practical applications, increased to 99.1% and 97.4% from 87.2% and 90.6%, respectively.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Friday, May 18, 2018

Abstract-Plasmonic Heterodyne Terahertz Spectrometry



Ning Wang, Semih Cakmakyapan, Mona Jarrahi,

https://www.osapublishing.org/abstract.cfm?uri=CLEO_SI-2018-SW4D.2

We demonstrate a new class of terahertz spectrometers that use plasmonic photomixers as frequency downconverters to offer quantum-level sensitivity at room temperature. We demonstrated double-sideband noise temperatures of 120–270 K (10hv/k -2hv/k) over 0.1–2 THz, equivalent to 10-2 photons.
© 2018 The Author(s)

Tuesday, April 19, 2016

Compact terahertz radiation source using a bimodal laser and plasmonic photomixer


http://spie.org/newsroom/technical-articles/6389-compact-terahertz-radiation-source-using-a-bimodal-laser-and-plasmonic-photomixer



Combining a plasmonic photomixer with a novel two-section digital distributed feedback laser diode enables generation of high-power, wavelength-tunable terahertz radiation at room temperature.

19 April 2016, SPIE Newsroom. DOI: 10.1117/2.1201603.006389
Terahertz waves offer unique opportunities in many fields. These include chemical sensing, material characterization, non-destructive diagnosis, medical imaging, and security screening. For many of these applications, however, practical feasibility is limited by low radiation power, narrow bandwidth, and the bulky nature of existing terahertz radiation sources.1
To address these limitations, we have recently demonstrated a compact terahertz source based on a novel two-section digital distributed feedback (D-DFB) laser diode and plasmonic photomixer. Our system generates terahertz radiation with 0.15–3THz frequency tunability, 2MHz linewidth, and less than 5MHz frequency stability over one minute, at power levels that can be used in practical imaging and sensing applications. We achieve terahertz wave generation through difference frequency generation, by pumping the plasmonic photomixer with two output optical beams from a two-section D-DFB laser diode.
Our two-section D-DFB laser diode—see Figure 1(a)—is a standard ridge waveguide laser diode, with a ridge width of 2.5um, which we fabricated on an indium phosphide substrate. The laser active region consists of five compressively strained aluminum gallium indium arsenide quantum wells with a well thickness of 5nm. The laser cavity is 700μm long and divided into two sections (with lengths of 400 and 300μm, respectively) that are separated by a 2μm-wide etched trench. The output beam is emitted from the first of these sections (section 1).

Figure 1. (a) Schematic diagram of the two-section digital distributed feedback laser diode. (b) The system's optical spectra at three different operating points. dBm: Decibel-milliwatts.
To achieve dual-mode output wavelengths, different features are etched into the ridge waveguide of each section to select two dynamically stable single lasing modes.2, 3 When both lasers are operated together, the coupling between the two laser cavities results in the generation of light at two wavelengths.4 In the meantime, we can tune the separation between the wavelengths by varying the temperature of the overall structure and the currents applied to the laser sections. The output spectra of the two-section D-DFB laser, at three specific operating points, are shown in Figure 1(b). With these operating conditions, we achieve spectral separations of 0.15, 1.62, and 2.99THz, and linewidths of about 1MHz.1
We used a plasmonic photomixer to convert the optical beam from the two-section D-DFB laser to terahertz radiation.5, 6 The photomixer comprises an ultrafast photoconductor, with plasmonic contact electrode gratings, integrated with a logarithmic spiral antenna on an erbium arsenide:indium gallium arsenide substrate, as shown in Figure 2(a). When the optical beam from the two-section D-DFB laser is incident on the anode plasmonic contact electrodes, a large fraction of the photogenerated carriers is generated in close proximity to the contact electrodes (as a result of the excitation of surface plasmon waves). By concentrating a major portion of the incident optical beam near the plasmonic contact electrodes, a large number of the photogenerated electrons drift to the anode plasmonic contact electrodes on a sub-picosecond timescale to efficiently contribute to terahertz radiation.5–11 We then feed the induced photocurrent to the logarithmic spiral antenna to generate terahertz radiation at the beating frequency of the two main spectral peaks of the two-section D-DFB laser. We use a fiber amplifier with a 2% duty cycle to amplify the laser output before coupling it to the plasmonic photomixer.

Figure 2. (a) Schematic diagram and scanning electron microscope images of the fabricated erbium arsenide:indium gallium arsenide (ErAs:InGaAs) plasmonic photomixer with plasmonic contact electrode gratings. (b) The radiated terahertz power at each continuous wave (CW) radiation cycle, as a function of frequency. (c) The radiated terahertz power at each CW radiation cycle as a function of the average optical pump power and bias voltage at 1.62THz.
The measured terahertz radiation power, as a function of frequency, is shown in Figure 2(b). These results indicate a broad radiation frequency tuning range of 0.15–3THz. At an average optical pump power of 100mW, we achieved terahertz radiation powers as high as 1.3mW, 106μW, and 12μW at each continuous wave radiation cycle at 0.44, 1.20, and 2.85THz, respectively. We also achieved higher terahertz radiation powers at higher optical pump powers, as illustrated in Figure 2(c). Linewidth measurements for the generated signals exhibit radiation linewidths of about 2MHz, with a frequency stability of less than 5MHz over a one-minute time frame.
In summary, we have demonstrated a novel compact terahertz radiation source that is based on a two-section D-DFB laser diode and plasmonic photomixer. The high power, broad frequency tunability, compact size, and robust operation of our terahertz source means that it offers a good solution for future high-performance terahertz imaging and sensing systems. In our future work, we will investigate the inclusion of plasmonic photomixing elements inside various types of bimodal lasers to offer a single-chip terahertz radiation source.
We gratefully acknowledge financial support from the Office of Naval Research, National Science Foundation, Army Research Office, Science Foundation Ireland Irish Photonic Integration Centre program, and the European Space Agency project Far IR Local Oscillator.

Shang-Hua Yang, Xiao Li, Ning Wang, Mona Jarrahi
University of California Los Angeles
Los Angeles, CA
Regan Watts, Vivi Cojocaru, Liam Barry
School of Electronic Engineering
Dublin City University
Dublin, Ireland
James O'Gorman
Xylophone Optics Ltd
Dublin, Ireland

References:
1. S.-H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O'Gorman, L. P. Barry, M. Jarrahi, Tunable terahertz wave generation through a novel bimodal laser diode and plasmonic photomixer, Opt. Express 23, p. 31206-31215, 2015.
2. J. Patchell, D. Jones, B. Kelly, J. O'Gorman, Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations, Proc. SPIE 5825, 2005. doi:10.1117/12.611334
3. B. Corbett, D. McDonald, Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation, Electron. Lett. 31, p. 2181-2182, 1996.
4. J. Hong, R. Finlay, R. Tong, C. Rogers, D. Goodchild, Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers, IEEE Photon. Technol. Lett. 11, p. 1354-1356, 1999.
5. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation, Opt. Lett. 39, p. 4522-4524, 2014.
6. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, High power terahertz generation using 1550 nm plasmonic photomixers, Appl. Phys. Lett. 105, p. 011121, 2014.
7. S.-H. Yang, M. Jarrahi, Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings, Opt. Lett. 38, p. 3677-3679, 2013.
8. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun. 4, p. 1622, 2013. doi:10.1038/ncomms2638
9. M. Jarrahi, Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators, IEEE Trans. Terahertz Sci. Technol. 5, p. 391-397, 2015.
10. N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi, High power terahertz generation using large area plasmonic photoconductive emitters, IEEE Trans. Terahertz Sci. Technol.5, p. 223-229, 2015.
11. S.-H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi, 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes, IEEE Trans. Terahertz Sci. Technol. 4, p. 575-581, 2014.

Tuesday, October 13, 2015

Abstract-Terahertz transmission and sensing properties of microstructured PMMA tube waveguide



Fei Fan, Xuanzhou Zhang, Shanshan Li, Decai Deng, Ning Wang, Hao Zhang, and Shengjiang Chang
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-23-21-27204&id=330151

A terahertz (THz) tube waveguide with grating structure has been designed, fabricated and characterized as a microstructure waveguide sensor. The resonance and polarization properties of this microstructured tube have been experimentally and theoretically investigated, which indicates that the grating etched on the tube surface has a remarkable modulation effect on the tube resonance and polarization dependence for THz waves. Moreover, a real-time quantitative sensing has been realized based on this tube waveguide in the THz time-domain spectroscopy system. Compared with the bare tube without grating, the grating structure strongly enhances the interaction between THz evanescent field on the tube surface and analytes, improving the sensitivity. This microstructured PMMA THz tube reveals a high sensitivity of 50GHz/μl and precision of larger than 0.125μl with a good linear relationship for THz sensing applications.
© 2015 Optical Society of America

Monday, August 26, 2013

Abstract-Noise Analysis of Photoconductive Terahertz Detectors





The noise performance of photoconductive terahertz detectors is analyzed and the tradeoff between low-noise and high-responsivity operation of photoconductive detectors is investigated as a function of device parameters and operational settings. The analysis is conducted on two general photoconductive detector architectures, symmetrically pumped and asymmetrically pumped photoconductive detector architectures. The results indicate that the highest signal-to-noise ratios are offered by the symmetrically pumped and asymmetrically pumped detector architectures for the photoconductive detectors based on short-carrier lifetime and long-carrier lifetime semiconductors, respectively.