Showing posts with label N. Q. Vinh. Show all posts
Showing posts with label N. Q. Vinh. Show all posts

Thursday, April 23, 2015

Abstract-High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water




Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water’s most rapid intermolecular motions. In response, we have built a vector network analyzer dielectricspectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric responseof water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the supplementary material), we have obtained strong new constraints on theories of water’s collective dynamics. For example, while the salt-dependencies we observe for water’s two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bonds

Sunday, August 26, 2012

Abstract-Inducing an incipient terahertz finite plasmonic crystal in coupled two dimensional plasmonic cavities


 G. C. Dyer, G. R. Aizin, S. Preu, N. Q. Vinh, S. J. Allen, J. L. Reno, and E. A. Shaner
Accepted 
We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.