Showing posts with label M. Rösch. Show all posts
Showing posts with label M. Rösch. Show all posts

Sunday, January 7, 2018

Abstract-Terahertz quantum cascade lasers frequency combs: Wide bandwidth operation and dual-comb on a chip


G. Scalari, M. Rösch,   M. Beck,   D. Bachmann,  K. Unterrainer,   J. Faist

http://ieeexplore.ieee.org/document/8086427/

Summary form only given. Terahertz (THz) quantum-cascade lasers (QCLs) constitute a very promising candidate for compact, wide bandwidth, integrated frequency combs [1, 4-7]. QCLs based on heterogeneous cores display the widest spectral coverage reaching more than one octave [2]. The possibility to engineer the gain profile turns out to be fundamental also with respect to dispersion compensation in order to extended the comb spectral bandwidth [2, 7]. In the effort of extending the comb operation to a full-octave to implement the laser self-referencing [3], we present here a new here a new THz QCL active region that allows the generation of a frequency comb with a spectral bandwidth exceeding of 1 THz centered at 3.1 THz. It fully exploits the capability of QCLs to integrate different active region designs within one laser cavity. The used building block is the three-active region design reported in Ref. [2], where a design at 3.4 THz has been added to increase the bandwidth towards higher frequencies. The four designs have central frequencies of 2.3, 2.6, 2.9, and 3.4 THz, the number of periods per design has also been rearranged in order to provide a flat gain resulting in a similar threshold for all the active regions and more dynamic range. Additionally, the doping level has been increased. Laser performance results in a largely extended dynamic range with respect to the original three-stack structure. Peak powers above 8 mW are recorded at 30 K and the lasing spectrum spans over 1.94 THz from 1.88 THz to 3.82 THz covering more than a full octave in frequency (Fig.1(a, b)). Dry-etched lasers with side-absorbers for lateral mode suppression similar as in [5] were fabricated for continuous wave (CW) operation and comb operation is probed through the beatnote analysis. Fig. 1(c, d) shows the beatnote as a function of the injected current with a maximum comb span of 1.1 THz which is the broadest demonstrated so far. Further proof of comb regime comes from the simultaneous measurements of two laser ridges on the same chip that show multiheterodyne spectra working in a dual-comb configuration [6].

Wednesday, November 30, 2016

Abstract-Negative free carrier absorption in terahertz quantum cascade lasers




We analyze the peculiar case where the free carrier absorption arising from LO phonon absorption-assisted transitions becomes negative and therefore turns into a gain source for quantum cascade lasers. Such an additional source of gain exists when the ratio between the electronic and the lattice temperatures is larger than one, a condition that is usually fulfilled in quantum cascade lasers. We find a gain of few cm1's at 200K. We report the development of a terahertz quantum cascade laser operating in the negative free carrier absorption regime.

Friday, November 7, 2014

Abstract-Spectral gain profile of a multi-stack terahertz quantum cascade laser



The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of the measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.