Showing posts with label C. Elissalde. Show all posts
Showing posts with label C. Elissalde. Show all posts

Tuesday, August 2, 2016

Abstract-Bulk magnetic terahertz metamaterials based on dielectric microspheres














M. Šindler, C. Kadlec, F. Dominec, P. Kužel, C. Elissalde, A. Kassas, J. Lesseur, D. Bernard, P. Mounaix, and H. Němec

Rigid metamaterials were prepared by embedding TiO2 microspheres into polyethylene. These structures exhibit a series of Mie resonances where the lowest-frequency one is associated with a strong dispersion in the effective magnetic permeability. Using time-domain terahertz spectroscopy, we experimentally demonstrated the magnetic nature of the observed resonance. The presented approach shows a way for low-cost massive fabrication of mechanically stable terahertz metamaterials based on dielectric microresonators.
© 2016 Optical Society of America
Full Article  |  PDF Article

Tuesday, October 22, 2013

Abstract-Broadband effective magnetic response of inorganic dielectric resonator-based metamaterial for microwave applications




A single-sized dielectric cylinder-based metamaterial is fabricated from TiO2 nanoparticles, using a bottom-up approach. The sub-elements constituting the metalayer are embedded in a nonmagnetic transparent host matrix in the microwave regime and arranged in a square lattice. We demonstrate numerically and experimentally a broadband magnetic activity. The key feature to achieve this performance remains in the high aspect ratio of the metamaterial building blocks. This is a very promising step towards complex electromagnetic functions, involving low-cost metamaterials with simple fabrication.