A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Showing posts with label Aydin Babakhani. Show all posts
Showing posts with label Aydin Babakhani. Show all posts
Thursday, June 20, 2019
Abstract-An Integrated Germanium-Based THz Impulse Radiator with an Optical Waveguide Coupled Photoconductive Switch in Silicon
Peiyu Chen, Mostafa Hosseini, Aydin Babakhani
https://www.mdpi.com/2072-666X/10/6/367/htm
This paper presents an integrated germanium (Ge)-based THz impulse radiator with an optical waveguide coupled photoconductive switch in a low-cost silicon-on-insulator (SOI) process. This process provides a Ge thin film, which is used as photoconductive material. To generate short THz impulses, N++ implant is added to the Ge thin film to reduce its photo-carrier lifetime to sub-picosecond for faster transient response. A bow-tie antenna is designed and connected to the photoconductive switch for radiation. To improve radiation efficiency, a silicon lens is attached to the substrate-side of the chip. This design features an optical-waveguide-enabled “horizontal” coupling mechanism between the optical excitation signal and the photoconductive switch. The THz emitter prototype works with 1550 nm femtosecond lasers. The radiated THz impulses achieve a full-width at half maximum (FWHM) of 1.14 ps and a bandwidth of 1.5 THz. The average radiated power is 0.337 W. Compared with conventional THz photoconductive antennas (PCAs), this design exhibits several advantages: First, it uses silicon-based technology, which reduces the fabrication cost; second, the excitation wavelength is 1550 nm, at which various low-cost laser sources operate; and third, in this design, the monolithic excitation mechanism between the excitation laser and the photoconductive switch enables on-chip programmable control of excitation signals for THz beam-steering.
Saturday, December 15, 2018
UCLA Samueli’s Integrated Sensors Lab partners with aviation network to test terahertz breakthrough
UCLA Samueli School of Engineering’s Integrated Sensors Laboratory is collaborating with Airborne Wireless Network (ABWN), a leader in high-speed broadband aerial wireless networks, to field test its terahertz-band communication technology at medium altitude.
At present, the world’s wireless connectivity is achieved through undersea cables, ground-based fiber and satellites. A midair digital network is a potential solution to provide low cost, high-speed connectivity to commercial and private aircraft in flight, as well as remote areas such as island nations and territories, ships at sea, and oil platforms.
“We are excited to enter into this agreement and pair UCLA’s pioneering work in terahertz communications with our inventive work in air-to-air and air-to-ground mesh networks,” said Mike Warren, CEO of ABWN. “There are many areas of collaboration and mutual interest.”
The Integrated Sensors Laboratory, directed by Aydin Babakhani, associate professor of electrical and computer engineering, designs, fabricates, and tests silicon-based terahertz sensors and systems. The laboratory has reported the world’s first picosecond pulse generation and detection technology using silicon microchips and successfully demonstrated a long distance terahertz wireless communication link.
“We look forward to our collaboration with ABWN in deploying our terahertz technology on airborne platforms,” said Babakhani. “The large bandwidth and high directivity offered by our research is an ideal solution for establishing secure air-to-air wireless links. Terahertz also offers much larger bandwidth than today’s 5G systems. The technology has the potential to enable a link with over one terabits-per-second speed, which is fifty times higher than the peak data rate offered by today’s 5G systems.”
The UCLA-developed technology avoids the alignment and dispersion issues that limit the performance of free-space optical links. In addition to communication, the broadband terahertz pulse successfully augments the capabilities of precision radars and navigation systems, and also enables the identification and classification of small drones and other airborne objects through hyper-spectral sensing and micro-Doppler effects.
The technology will be tested at mid-level altitudes (10,000 to 15,000 feet) where it is expected to have inherent advantages over satellites; it will also be used to test and establish high bandwidth self-synchronizing airborne data links.
Monday, September 10, 2018
Marconi Society Friend Ted Rappaport: Terahertz – The Next Frontier for Communications & Electronics
NYU WIRELESS and the NYU Tandon School of Engineering Organize Series to Spur Research in the Emerging Field
The next frontier for ultra-fast computing and wireless communications – the terahertz electromagnetic spectrum – will be examined in a series of seminars by foremost scientists and engineers in the field. Organized by the NYU WIRELESS research center and NYU Tandon School of Engineering’s Electrical and Computer Engineering Department, the series at the school’s Brooklyn, New York, campus will be streamed for NYU WIRELESS industrial affiliate sponsors and the public and archived for later viewing.
“Circuits: Terahertz (THZ) and Beyond” will explore the vast unknown that lies between the optical spectrum and the millimeter wave (mmWave) frequencies that will soon carry massive amounts of data in 5G, or fifth generation, of cellphone devices. Physicists, mathematicians, and engineers have been working for decades trying to solve fundamental challenges of the THz spectrum and pushing the boundaries of quantum nanoelectronics in the hope of unlocking even more gains for communications, computing, sensing, and materials.
“Recent breakthroughs in THz research, quantum computing, and nanotechnology have opened exciting new vistas for the future of electrical and computer engineering, and NYU has made major investments in these promising areas already,” said Professor Theodore (Ted) S. Rappaport, director and founder of NYU WIRELESS. “While we have pioneered the use and understanding of mmWave frequencies for 5G, it is clear that new knowledge will be needed to bridge the gap between the fundamentals of these new areas with the design and fabrication of devices. In keeping with the NYU WIRELESS tradition, we also seek to amplify the global conversation in these exciting areas by organizing this series and making it free and open to all.”
“The spectrum also holds great promise for communications and networks – both strongholds of NYU Tandon research – as well as sensing and optics,” said Professor Ivan Selesnick, chair of the department. The THz seminar series reflects our commitment to both educate students and foster the pursuit of new important research areas in electronics and wireless communication.”
“This new series will bring leaders in this emerging field of study to Brooklyn, to the benefit of our students, faculty, and all of New York, as well as scholars worldwide,” said new NYU Tandon Dean Jelena Kovačević, whose academic background is electrical and biomedical engineering. “Our faculty and NYU WIRELESS established Brooklyn as a world-renowned center for mmWave technology, and the excitement is palpable here as they explore technologies that will drive communication and computing decades hence.”
The inaugural seminar, on Wednesday, September 5, 2018, will feature Aydin Babakhani speaking on “Silicon-based Integrated Sensors with On-chip Antennas: From THz Pulse Sources to Miniaturized Spectrometers.” An associate professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science and director of the Integrated Sensors Laboratory at UCLA, Babakhani’s research could have major implications for biomedical devices. For example, Babakhani designed a wireless, battery-free pacemaker that receives energy through radio frequency radiation and eliminates the need for risky surgeries to replace batteries.
All seminars begin at 11 a.m. Eastern and can be watched at engineering.nyu.edu/live. For more information, including the full schedule of speakers, locations, and the department’s acclaimed series on artificial intelligence, visit https://engineering.nyu.edu/academics/departments/electrical-and-computer-engineering/ece-seminar-series.
“Circuits: THz and Beyond” is organized by NYU Tandon faculty members Shaloo Rakheja, Davood Shahrjerdi, Ramesh Karri, and Ted Rappaport.
NYU Tandon’s Department of Electrical and Computer Engineering has a long tradition of excellence in teaching and research, dating to 1885. The department rose to prominence in the mid-twentieth century for work in microwaves, communications, electrical machinery, and automatic control. Currently, its faculty and NYU WIRELESS are prominent in mmWave technology, massive MIMO, hardware security, networking, signal processing, and the smart grid. Its research activities are organized into five major areas: Communications, Networking and Signal Processing/Machine Learning; Systems, Control and Robotics; Energy Systems, Smart Grids and Power Electronics; Electromagnetics and Analog/RF/Biomedical Circuits; and Computer Engineering and VLSI.
NYU Tandon’s Department of Electrical and Computer Engineering has a long tradition of excellence in teaching and research, dating to 1885. The department rose to prominence in the mid-twentieth century for work in microwaves, communications, electrical machinery, and automatic control. Currently, its faculty and NYU WIRELESS are prominent in mmWave technology, massive MIMO, hardware security, networking, signal processing, and the smart grid. Its research activities are organized into five major areas: Communications, Networking and Signal Processing/Machine Learning; Systems, Control and Robotics; Energy Systems, Smart Grids and Power Electronics; Electromagnetics and Analog/RF/Biomedical Circuits; and Computer Engineering and VLSI.
Sunday, February 4, 2018
Abstract- Broadband Oscillator-Free THz Pulse Generation and Radiation Based on Direct Digital-to-Impulse Architecture
M. Mahdi Assefzadeh, Aydin Babakhani,
http://ieeexplore.ieee.org/document/8022938/
Broadband 0.03-1.1 THz signal generation and radiation are demonstrated based on an oscillator-free direct digital-to-impulse architecture with a 1.9-ps full width at half maximum and 130-GHz 3-dB bandwidth (BW) (200-GHz 10-dB BW) centered at 160 GHz. The radiated pulse achieves a peak pulse effective isotropic-radiated power of 19.2 dBm and peak pulse-radiated power of 2.6 mW. An ON/OFF impulse-shaping technique is introduced and implemented to suppress undesired ringing and to increase dc-to-radiated efficiency. The frequency-comb spectrum of the radiated pulse train with 5.2-GHz repetition rate is measured up to 1.1 THz. At a distance of 4 cm, the measured received SNR at 1 and 1.1 THz is 28 and 22 dB, respectively. A 1.1-THz tone is measured with a 10-dB spectral width of 2 Hz, demonstrating an extremely narrow spectral line width (two parts per trillion). Time-domain picosecond pulses are characterized using a custom femtosecond-laser-based terahertz time-domain spectroscopy system. Coherent spatial combining from two widely spaced chips is demonstrated. It is shown that the starting time of the radiated pulses is locked to the edge of the input digital trigger with a timing jitter of 270 fs. The chip is fabricated in a 130-nm SiGe BiCMOS process technology.
Monday, January 8, 2018
Abstract- Laser-Free THz pulse sources
M. Mahdi Assefzadeh, Aydin Babakhani
http://ieeexplore.ieee.org/document/8067089/
Laser-free 0.03-1.1 THz signal generation and radiation in silicon is presented based on an oscillator-free direct digital-to-impulse architecture that is capable of generating and radiating pulses with a FWHM of 1.9 ps and a 3dB-BW of 130 GHz centered at 160 GHz. A peak pulse radiated power of 2.6 mW and a peak pulse EIRP of 19.2 dBm are achieved. To suppress ringing after the impulse and increase DC-to-radiated efficiency, an ON/OFF impulse-shaping technique is designed and implemented in the circuit level. Frequency-domain measurements are performed up to 1.1 THz, where the received SNR at 1.0 THz and 1.1 THz is 28 dB and 22 dB, respectively. An extremely narrow spectral line width is demonstrated with a 10-dB spectral width of only 2 Hz at 1.1 THz (two parts per trillion). Time-domain pulses are characterized using a novel fsec-laser-based THz-TDS measurement technique. The chip is fabricated in a 130-nm SiGe BiCMOS process technology.
Tuesday, August 15, 2017
Abstract-Time-Domain Characterization of Silicon-Based Integrated Picosecond Impulse Radiators
Peiyu Chen, M. Mahdi Assefzadeh, Aydin Babakhani,
http://ieeexplore.ieee.org/document/7990525/
A direct time-domain characterization of silicon-based integrated picosecond impulse radiators using a femtosecond laser-gated optoelectronic sampling technique is developed. In the proposed system, a 1550 nm femtosecond laser source is used to generate an electrical trigger signal fed to a picosecond impulse radiator, and another synchronized 1550 nm femtosecond laser source is used to gate a photoconductive detector. Technical challenges are addressed to synchronize the silicon radiators with the optoelectronic sampling system. This paper presents the details of the proposed technique and characterization of 4.8 ps impulses radiated by a custom silicon chip.
Tuesday, June 24, 2014
Terahertz tech gets a major push at Rice
Mike Williams
http://news.rice.edu/2014/06/24/terahertz-tech-gets-a-major-push-at-rice-2/



http://news.rice.edu/2014/06/24/terahertz-tech-gets-a-major-push-at-rice-2/
Keck Foundation grant to Rice University bolsters cutting-edge research for communications, imaging
Rice University scientists have received a grant to develop terahertz-based technology that could enable a dramatic advance in wireless communications and other disciplines.
The $1 million grant by the W.M. Keck Foundation will let them tackle some of the knotty problems barring them from using the largely untapped terahertz region of the electromagnetic spectrum. Rice will supplement the grant with a $1.5 million commitment.
Chips the size of the one displayed above, which put out the shortest pulse ever generated by such a device, will be packaged into arrays that can steer terahertz beams. Click on the photo for a larger version. Photo by Jeff Fitlow
Potential benefits include much faster cellphone networks as well as sensors and detectors that may revolutionize medical imaging, security screening and manufacturing quality control.
Terahertz waves, which occupy the band from about 1 millimeter to 100 micrometers, are unique in the spectrum because few have figured out how to bend them to their purposes, said Daniel Mittleman, a professor of electrical and computer engineering and principal investigator on the project.
Longer waves power microwave ovens and radar; shorter waves include infrared and ultraviolet light, the visible spectrum and X-rays. While they don’t pass easily through water, or even travel long distances in the atmosphere, many non-metallic materials are transparent to terahertz. This unique feature opens the door for many interesting applications, such as detecting chemicals and hidden explosives.
“Terahertz technologies have been on the horizon for a long time, but people have only been thinking about specific applications seriously for a few years,” Mittleman said. “But there is such potential. For example, there are famous diagrams that show that the demand for wireless bandwidth is growing exponentially, and that six or eight years from now we’ll need tens or maybe 100 gigahertz of bandwidth. We’re nowhere near that now with existing wireless networks (which use a part of the spectrum well below terahertz frequencies).” Current phones only achieve hundreds of megabits per second even under the most ideal conditions, he said.
“If you want a higher data rate, you have to go to a higher carrier frequency. But almost all of the frequencies above what we use now are already claimed by someone and regulated,” he said.
Rice scientist Aydin Babakhani, left, one of four university researchers who have won a new grant to develop new terahertz technologies, shows a microchip that put out the shortest pulse ever measured from such a small device. The chip designed by Babakhani and graduate student Mahdi Assefzadeh, right, is seen as a step toward the ability to use terahertz for wireless communications and other applications. Photo by Jeff Fitlow
Until you get up into the terahertz range. The band between microwave and infrared offers a wide-open frontier, and a unique collection of talent at Rice is eager to explore it, Mittleman said. “We have some innovative approaches, and the combination of expertise we have is fairly unusual,” he said.
Co-investigators on the project are Junichiro Kono, a professor of electrical and computer engineering and of physics and astronomy; Edward Knightly, a professor of electrical and computer engineering and of computer science; and Aydin Babakhani, an assistant professor of electrical and computer engineering.
Mittleman’s research centers on devices like a terahertz version of Rice’s single-pixel camera and metamaterials that offer the possibility of high-speed modulation of terahertz beams. Kono specializes in the creation of advanced terahertz detectors that take advantage of Rice’s unique position as a world leader in carbon nanotechnology. Knightly, as director of Rice’s Wireless Networks Group, is a pioneer in the development of new wireless technologies. And Babakhani, director of the Rice Integrated Systems and Circuits laboratory and a winner of a DARPA Young Faculty Award in 2012, designs millimeter-wave and terahertz integrated circuits and antennas for communications, radar, medical imaging and biosensing.
Terahertz signals can help identify substances from the way they interact with the beams, but the beams themselves don’t travel as far in air as microwave signals. And there are other problems, primary among them the lack of a powerful, portable and practical source of terahertz.
The Rice team expects to chip away at those problems. Babakhani and his team have already developed a silicon-based microchip that puts out the shortest pulse ever generated by such a device, an 8-picosecond impulse radiator that won the best paper award at the recent IEEE International Microwave Symposium. While it’s not in the terahertz range, it could get there with the assistance of graphene, said Mittleman, who also serves as director of Rice’s Richard E. Smalley Institute for Nanoscale Science and Technology.
“Aydin thinks the power can scale,” he said. “We want to combine what Jun has done with the optical nonlinearities of graphene to frequency-double or triple it up to the range we need.”
Small, fast, inexpensive chips that can not only send and receive terahertz beams but also steer them are necessary for future wireless applications, Mittleman said. “We’re going to need lots of them, on the order of 100,000 of them to cover a city the size of New York, as opposed to the several thousand cell towers they use now.”
The world's smallest terahertz-enabled chip, similar to this one developed in the Rice lab of Aydin Babakhani, may be critical to the success of next-generation communications networks. Click on the photo for a larger version. Courtesy of the Rice Integrated Systems and Circuits lab
Babakhani’s speck-sized chips hold the key to steerable terahertz beams. “We’ve already demonstrated beam steering with two chips about 10 centimeters apart,” he said. “The timing synchronization between them is almost perfect. Now we’re looking at combining a signal from many chips with timing accuracy of a couple of hundred femtoseconds.” A femtosecond is one millionth of one billionth of a second.
Wireless terahertz communications would require new and smarter network architecture. Current cellular systems have to imperceptibly switch between users to keep the signals from interfering with each other, Knightly said, but that will no longer be an issue in a network that sends data through a narrow beam that tracks the user.
“With terahertz, we’ll have to coordinate distributed antennas, users and highly directional links, all wirelessly. This is a true paradigm shift requiring us to rethink the basic principles of wireless networking.” Knightly said.
Leaping the hurdles associated with wireless will help the team on other projects that require strong, dependable terahertz sources and detectors. Mittleman’s experience with the terahertz single-pixel camera and Kono’s carbon nanotube-based detectors hint at the possibility of multispectral terahertz imaging. A super spectrometer would be particularly useful for security screening of people and containers.
Kono’s successful efforts to detect and manipulate terahertz using graphene and carpets of nanotubes has inspired visions of many potential applications, he said. “Several pieces of the terahertz puzzle have reached a moderate level of maturity, but these pieces have emerged from diverse disciplines ranging from material science to optoelectronics to signal processing. The ultimate goal of our research is to fully eliminate the terahertz ‘technology gap.’”
Kono said the researchers intend to develop materials and build devices, but also aim to deepen their understanding of the physics and chemistry at the boundaries of electronics and optics.
“The great thing about the experimental capabilities we have right now is that, in terms of spectrum, we’re attacking the problems from above and below,” Knightly said. “Below terahertz are millimeter wave and 60 gigahertz technologies, and we have experimental state-of-the-art devices at those frequencies in our labs.
“From above, we have prototypes in the visible light range that, from a networking point of view, have characteristics like line-of-sight and short range in common with terahertz. With these and other fundamental advances, we’re very well positioned to realize our goals.”
Subscribe to:
Posts (Atom)