Showing posts with label Angel Rubio. Show all posts
Showing posts with label Angel Rubio. Show all posts

Friday, April 29, 2016

Terahertz Modulation of UV Light by Graphene Nano-ribbon

Simulating the feasibility of a terahertz radiation device

http://www.opli.net/opli_magazine/eo/2016/terahertz-modulation-of-uv-light-by-graphene-nano-ribbon-feb-news/

Yoshiyuki Miyamoto of Materials Interface Simulation Group, the Nanomaterials Research Institute, the National Institute of Advanced Industrial Science and Technology, in collaboration with Hong Zhang and Xinlu Cheng of Sichuan University and Angel Rubio, Max Planck Institute for Structure and Dynamics of Matters, theoretically presented terahertz (THz) modulation of UV light by a graphene nano-ribbon from computational simulation and proposed the application to a terahertz radiation device.
This simulation shows that the intensity of UV light passing through a graphene nano-ribbon is modulated with the frequency of terahertz. When such modulated UV light shines on a semiconductor which has a photo-conducting property, the semiconductor generates a photo-current whose intensity is modulated with a terahertz frequency. Therefore, such a photo-conducting semiconductor connected to an antenna is expected to be a source of terahertz radiation. This idea might lead to the production of compact terahertz-radiation devices which are useful for identification of organic compounds as well as observation of living matter.
The details of the current simulation have been published in Nanoscale, a journal published by the Royal Society of Chemistry (England).
Applications of graphene attract a lot of attention and graphene devices having highly conductive electron- and hole-carriers are being studied (AIST press release on December 11, 2012). However, for optical-devices, the highly conductive properties are not always beneficial. On the other hand, graphene nano-ribbons, which are obtained by cutting a graphene sheet into ribbons, have a band-gap and a semiconducting property, and light absorption/transmission properties of the graphene nano-ribbons have been studied.
Terahertz waves are known to be useful for identification of harmful substances and inspecting degradation of buildings. However, it is difficult to fabricate strong terahertz radiation devices with compact sizes and low cost.
Terahertz Modulation of UV Light by Graphene Nano-ribbon
Simulated total field (red) and optical field (blue) near the surface of the graphene nano-ribbon with photon energies of 6.20 eV and 6.53 eV, respectively
AIST is aiming at the acceleration of research and development of nano-scale materials by designing using computational simulations. By simulating dynamics of electrons and atoms in materials with first-principles calculations, electron dynamics of irradiated materials and optical responses of nano-scaled materials such as graphene were studied (AIST press release on March 18, 2015).
In this work, the application of graphene nano-ribbons was discussed by AIST and Sichuan University, and the usage of first-principles methods and data analysis were considered by the Max Planck Institute for Structure and Dynamics of Matters. Then AIST performed numerical calculations. This work was done with financial support by MEXT Grant-in-Aid for Scientific Research on Innovative Area, “Science of Atomic Layers (SATL),” (FY2013 - FY2017) and all computations were performed by using the Large-Scale Computer System in the Cybermedia Center of Osaka University.
In the present work, the researchers found terahertz modulation of the intensity of UV light passing through a graphene nano-ribbon by a simulation and proposed a terahertz radiation device using the discovered phenomenon. The graphene nano-ribbon, which is a one-dimensional material having a band-gap like semiconductors, is the current object. The edge of the graphene nano-ribbon was assumed to have an armchair structure with carbon atoms at the edge terminated by hydrogen atoms (Fig. 1). By performing a first-principles calculation based on the time-dependent density functional theory to simulate the irradiation of UV light with polarization vector shown in Fig. 1, oscillation of electrons running from one edge of the grapheme nano-ribbon to the other edge alternatively was computed. This suggests, that the oscillation of the electron cloud in the graphene nano-ribbon is following the oscillation of optical field of the UV light. If the eigen frequency of the electronic oscillation is close to that of the optical frequency, resonance is expected to occur. The first-principles simulation showed resonance of the optical field and the electron cloud with UV light irradiation (photon energy is around 6 eV), and periodic enhancement and decay in amplitude of the electron-cloud oscillation was computed.
Frequencies from 0.5 THz to 5 THz are practically useful region of terahertz radiation. Besides graphene nano-ribbons, further exploration will be made for new materials that can be used for radiation with frequencies from 0.5 THz to 5 THz. In the exploration, the wavelength of the incident light spanning UV, visible, and infrared regions will be the target.

Saturday, March 5, 2016

The properties of light can be controlled by means of nanostructures


http://www.ehu.eus/en/en-content/-/asset_publisher/l57S/content/n_20160304_modulacion_luz?redirect=http%3A%2F%2Fwww.ehu.eus%2Fen%2Fen-home%3Fp_p_id%3D101_INSTANCE_eFh7%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_id%3Dcolumn-2%26p_p_col_pos%3D1%26p_p_col_count%3D3


A study led by the UPV/EHU-University of the Basque Country professor Ángel Rubio has simulated a new device to generate terahertz radiation using carbon nanostructures

A theoretical study based on computational simulations conducted by the UPV/EHU's Nano-bio Spectroscopy Research Group in collaboration with the Japanese research centre AIST, has shown that the intensity of ultraviolet light that is made to pass through a graphene nano-ribbon is modulated with a terahertz frequency. So we are seeing the opening up of a new field of research into obtaining terahertz radiation that has a whole host of applications. The research has been published in the prestigious journal Nanoscale.
The UPV/EHU's Nano-bio Spectroscopy Research Group led by Ángel Rubio, a UPV/EHU professor in the Department of Materials Physics and director of the Max Planck Institute for Structure and Dynamics of Matter in Hamburg, has simulated the converting of ultraviolet light into radiation in the terahertz range by making it pass through a graphene nano-ribbon, and has put forward a new compact device designed to generate radiation of this type based on the phenomenon discovered. The research, conducted in collaboration with the research group led by Yoshiyuki Miyamoto of the National Institute of Advanced Industrial Science and Technology (AIST) of Japan, has appeared in the prestigious journal Nanoscale, published by the Royal Society of Chemistry (United Kingdom).
Low-frequency terahertz radiation has a broad range of applications, such as the characterisation of molecules, materials, tissues, etc. However, right now it is difficult to manufacture small, efficient, low-cost devices to produce terahertz radiation.  This phenomenon "extends the range of applicability of radiation of this type to many other spheres in which it was not being used," explained Ángel Rubio, "owing to the fact that one would have to resort to much bigger radiation sources".

The starting point of a new field of research

To carry out this simulation, they used graphene nano-ribbons: strips cut out of sheets of graphene. In the research they concluded that UV light that exerts an effect on the nano-ribbon emits a totally different radiation (terahertz) perpendicular to the incident light. This phenomenon "opens up the possibility of generating structures that will allow the frequency range to be changed using different nanostructures," explained Prof Rubio. "A new field of research is being opened up".
Now that the existence of the phenomenon has been demonstrated, "it would be necessary to see if the same thing can be done with a different type of light source," explained Ángel Rubio. In the research they used a high-intensity laser pointer so that the simulation would be correct, but it should be possible to use "more accessible light sources", he specified. What is more, another step to be taken in this field would be "to use a set of nanostructures instead of a single one to produce an actual device."
The UPV/EHU group has worked on the proposal of the idea and its implementation in code that allows a simulation to be made on the computer, while the Japanese research centre AIST has been responsible for the numerical calculations. The researchers have used novel simulation techniques of first principles, methods in which the predictive capacity is very high: the behaviour of a material is predicted without using external parameters. "The simulation techniques have reached a point," concluded Rubio, "where systems that are later shown to actually behave in the same way experimentally can be predicted".

Additional information

The Nano-bio Spectroscopy Group is led by Ángel Rubio. The group's activity focusses on the theoretical research and modelling of electronic and structural properties of condensed matter as well as the development of new theoretical tools and computer codes to explore the electronic response of solids and nanostructures when handling external electromagnetic fields.
Ángel Rubio is a UPV/EHU professor, a member of the Department of Materials Sciences, and director of the Theory Department of the Max Planck Institute for Structure and Dynamics of Matter. He has over 300 scientific publications and over 22,000 mentions in the scientific literature. His research activity is internationally recognised and he has also received numerous distinctions and awards.

Bibliographic reference
Hong Zhang, Yoshiyuki Miyamoto, Xinlu Cheng, Angel Rubio.. Optical field terahertz amplitude modulation by graphene nanoribbons. Nanoscale, 2015,7, 19012-19017. DOI: 10.1039/C5NR05889A.

Friday, October 30, 2015

Abstract-Optical field terahertz amplitude modulation by graphene nanoribbons





Hong Zhang,*a   Yoshiyuki Miyamoto,b   Xinlu Chengc and  Angel Rubiodef  
*
Corresponding authors
a
College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
E-mail: hongzhang@scu.edu.cn
b
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
c
Key Laboratory of High Energy Density Physics and Technology of Ministry of Education; Sichuan University, Chengdu, China
d
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
e
Nano-Bio Spectroscopy group, Universidad del País Vasco CFM CSIC-UPV/EHU-MPC DIPC, 20018 San Sebastian, Spain
f
European Theoretical Spectroscopy Facility (ETSF)
Nanoscale, 2015, Advance Article

DOI: 10.1039/C5NR05889A






















In this study, first-principles time-dependent density functional theory calculations were used to demonstrate the possibility to modulate the amplitude of the optical electric field (E-field) near a semiconducting graphene nanoribbon. A significant enhancement of the optical E-field was observed 3.34 Å above the graphene nanoribbon sheet, with an amplitude modulation of approximately 100 fs, which corresponds to a frequency of 10 THz. In general, a six-fold E-field enhancement could be obtained, which means that the power of the obtained THz is about 36 times that of incident UV light. We suggest the use of semiconducting graphene nanoribbons for converting visible and UV light into a THz signal.