Efficient devices for control properties of electromagnetic waves are essential for the development of terahertz (THz) technologies. But despite the great progress achieved in a study of graphene, the influence of the number of graphene layers on its properties in the THz frequency range has not yet been sufficiently studied. In this work, we experimentally studied properties of multilayer graphene (MLG) films in the frequency range 0.2–0.8 THz, at a room temperature, and a relative humidity of 40%. Using our custom-made THz time-domain spectroscopic polarimetry system, we obtained spectra of the complex relative permittivity and the electrical conductance of the chemical vapor deposition graphene with ~14, ~40, and ~76 layers of graphene on glass substrates. It is shown that the conductance increases nonlinearly with an increase in the graphene layer number and reaches, for ~76 layers, 0.06 S for the real, and 0.03 S for the imaginary part, respectively.
No comments:
Post a Comment