Saturday, July 11, 2020

Abstract-Cascaded Multicycle Terahertz-Driven Ultrafast Electron Acceleration and Manipulation


Dongfang Zhang, Moein Fakhari, Huseyin Cankaya, Anne-Laure Calendron, Nicholas H. Matlis, and Franz X. Kärtner


https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011067

Terahertz (THz)-based electron acceleration and manipulation has recently been shown to be feasible and to hold tremendous promise as a technology for the development of next-generation, compact electron sources. Previous work has concentrated on structures powered transversely by short, single-cycle THz pulses, with millimeter-scale, segmented interaction regions that are ideal for acceleration of electrons in the sub- to few-MeV range, where electron velocities vary significantly. However, in order to extend this technology to the multi-MeV range, an investigation of approaches supporting longer interaction lengths is needed. Here, we demonstrate first steps in electron acceleration and manipulation using dielectrically lined waveguides powered by temporally long, narrow-band, multicycle THz pulses that copropagate with the electrons. This geometry offers centimeter-scale single-stage interaction lengths and offers the opportunity to further increase interaction lengths by cascading acceleration stages that recycle the THz energy and rephase the interaction. We prove the feasibility of THz-energy recycling for the first time by demonstrating acceleration, compression, and focusing in two sequential Al2O3-based dielectric capillary stages powered by the same multicycle THz pulse. Since the multicycle THz energy achievable using laser-based sources is currently a limiting factor for the maximum electron acceleration, recycling the THz pulses provides a key factor for reaching relativistic energies with existing sources and paves the way for applications in future ultrafast electron diffraction and free-electron lasers.
  • Figure
  • Figure
  • Figure
  • Figure

No comments: