A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Sunday, March 22, 2020
Abstract-Wide‐Bandgap Organic Crystals: Enhanced Optical‐to‐Terahertz Nonlinear Frequency Conversion at Near‐Infrared Pumping
Deokjoong Kim, Won Tae Kim, Jae‐Hyun Han, Ji‐Ah Lee, Seung‐Heon Lee, Bong Joo Kang, Mojca Jazbinsek, Woojin Yoon, Hoseop Yun, Dongwook Kim, Stein van Bezouw, Jochen Campo, Wim Wenseleers, Fabian Rotermund, O‐Pil Kwon,
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.201902099
Enhanced terahertz (THz) wave generation is demonstrated in nonlinear organic crystals through refractive index engineering, which improves phase matching characteristics substantially. Unlike conventional low‐bandgap nonlinear organic crystals, the newly designed benzimidazolium‐based HMI (2‐(4‐hydroxy‐3‐methoxystyryl)‐1,3‐dimethyl‐1H‐benzoimidazol‐3‐ium) chromophore possesses a relatively wide bandgap. This reduces the optical group index in the near‐infrared, allowing better phase matching with the generated THz waves, and leads to high optical‐to‐THz conversion. A unique feature of the HMI‐based crystals, compared to conventional wide‐bandgap aniline‐based crystals, is their remarkably larger macroscopic optical nonlinearity, a one order of magnitude higher diagonal component in macroscopic nonlinear susceptibility than NPP ((1‐(4‐nitrophenyl)pyrrolidin‐2‐yl)methanol) crystals. The HMI‐based crystals also exhibit much higher thermal stability, with a melting temperature Tm above 250 °C, versus aniline‐based crystals (116 °C for NPP). With pumping at the technologically important wavelength of 800 nm, the proposed HMI‐based crystals boost high optical‐to‐THz conversion efficiency, comparable to benchmark low‐bandgap quinolinium crystals with state‐of‐the‐art macroscopic nonlinearity. This performance is due to the excellent phase matching enabled by decreasing optical group indices in the near‐infrared through wide‐bandgap chromophores. The proposed wide‐bandgap design is a promising way to control the refractive index of various nonlinear organic materials for enhanced frequency conversion processes.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment