Luana Olivieri, Juan S. Totero Gongora, Luke Peters, Vittorio Cecconi, Antonio Cutrona, Jacob Tunesi, Robyn Tucker, Alessia Pasquazi, and Marco Peccianti
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-7-2-186
Ghost maging, based on single-pixel detection and multiple pattern illumination, is a crucial investigative tool in difficult-to-access wavelength regions. In the terahertz domain, where high-resolution imagers are mostly unavailable, ghost imaging is an optimal approach to embed the temporal dimension, creating a “hyperspectral” imager. In this framework, high resolution is mostly out of reach. Hence, it is particularly critical to developing practical approaches for microscopy. Here we experimentally demonstrate time-resolved nonlinear ghost imaging, a technique based on near-field, optical-to-terahertz nonlinear conversion and detection of illumination patterns. We show how space–time coupling affects near-field time-domain imaging, and we develop a complete methodology that overcomes fundamental systematic reconstruction issues. Our theoretical-experimental platform enables high-fidelity subwavelength imaging and carries relaxed constraints on the nonlinear generation crystal thickness. Our work establishes a rigorous framework to reconstruct hyperspectral images of complex samples inaccessible through standard fixed-time methods.
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
No comments:
Post a Comment