Wednesday, September 11, 2019

Abstract-Terahertz spectroscopy of enantiomeric and racemic pyroglutamic acid

Zhipeng Wu, Zhongjie Zhu, Chao Cheng, Jianbing Zhang, Gong Yan, Mingzhu Xu, Shaoping Lia, Hongwei Zhao,

The low-frequency vibrational properties of D-, L- and DL-pyroglutamic acid (PGA) have been investigated with the terahertz time-domain spectroscopy (THz-TDS) from 0.5 to 4.5 THz. The enantiomers (D- and L-PGA) present similar absorption spectra, while the spectrum of racemate (DL-PGA) is obviously different. The temperature-dependent THz spectra of different PGA were recorded in the range of 293–83 K. The spectral changes during the cooling process suggest that D- and L-PGA undergo a structural phase transition, and no phase change of DL-PGA was found. The results indicate that THz spectroscopy is highly sensitive to the crystal structure of molecules. The density functional theory (DFT) calculations based on the crystal structures were performed to simulate the sample's THz spectra. It was demonstrated that the characteristic resonant absorption peaks of the enantiomeric and racemic PGA in the low-frequency THz region originate from the different vibrations, which corresponding to the specific structures and intermolecular interactions. The conformational diversity and fluctuation may help to understand the properties of PGA in biochemistry and functional material.

No comments: