Christopher A. Curwen, John Reno, Benjamin S. Williams,
Metasurface cavity design and electromagnetic simulations |
Changing the length of a laser cavity is a simple technique for continuously tuning the wavelength of a laser but is rarely used for broad fractional tuning, with a notable exception of the vertical-cavity surface-emitting laser (VCSEL). This is because, to avoid mode hopping, the cavity must be kept optically short to ensure a large free spectral range compared to the gain bandwidth of the amplifying material. Terahertz quantum-cascade lasers are ideal candidates for such a short cavity scheme as they demonstrate exceptional gain bandwidths (up to octave spanning)3 and can be integrated with broadband amplifying metasurfaces4. We present such a quantum-cascade metasurface-based vertical-external-cavity surface-emitting laser (VECSEL) that exhibits over 20% continuous fractional tuning of a single laser mode. Such tuning is possible because the metasurface has subwavelength thickness, which allows lasing on low-order Fabry–Pérot cavity modes. Good beam quality and high output power are simultaneously obtained.
No comments:
Post a Comment