The fabrication of terahertz (THz) optics with arbitrary shapes via poly-methacrylate-based stereolithography is very attractive as it may offer a rapid, low-cost avenue towards optimized THz imaging applications. In order to design such THz optical components appropriately, accurate knowledge of the complex dielectric function of the materials used for stereolithographic fabrication is crucial. In this paper we report on the complex dielectric functions of several polymethacrylates frequently used for stereolithographic fabrication. Spectroscopic ellipsometry data sets from the THz to mid-infrared spectral range were obtained from isotropically cross-linked polymethacrylate samples. The data sets were analyzed using stratified layer optical model calculations with parameterized model dielectric functions. While the infrared spectral range is dominated by a number of strong absorption features with Gaussian profiles, these materials are found to exhibit only weak absorption in the THz frequency range. In conclusion, we find that thin transmissive THz optics can be efficiently fabricated using polymethacrylate-based stereolithographic fabrication.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Wednesday, August 7, 2019
Abstract-Terahertz to mid-infrared dielectric properties of polymethacrylates for stereolithographic single layer assembly
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment