The tilted-pulse-front setup utilizing a diffraction grating is one of the most successful methods to generate single- to few-cycle terahertz pulses. However, the generated terahertz pulses have a large spatial inhomogeneity, due to the noncollinear phase matching condition and the asymmetry of the prism-shaped nonlinear crystal geometry, especially when pushing for high optical-to-terahertz conversion efficiency. A 3D+1 (x,y,z,t) numerical model is necessary in order to fully investigate the terahertz generation problem in the tilted-pulse-front scheme. We compare in detail the differences between 1D+1, 2D+1 and 3D+1 models. The simulations show that the size of the optical beam in the pulse-front-tilt plane sensitively affects the spatio-temporal properties of the terahertz electric field. The terahertz electric field is found to have a strong spatial dependence such that a few-cycle pulse is only generated near the apex of the prism. The part of the beam farther from the apex contains a large fraction of the energy but has a waveform that deviates from a few-cycle. This strong spatial dependence must be accounted for when using the terahertz pulses for strong-field physics and carrier-envelope-phase sensitive experiments such as terahertz acceleration, coherent control of antiferromagnetic spin waves and terahertz high-harmonic generation.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Saturday, August 31, 2019
Abstract-Full 3D+1 modelling of the tilted-pulse-front setups for single-cycle terahertz generation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment