A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Wednesday, January 2, 2019
Abstract-Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range
Lin Peng, Xing Jiang, Si-min Li,
https://nanoscalereslett.springeropen.com/articles/10.1186/s11671-018-2811-z
Terahertz electromagnetic (EM) wave components usually have a single function, such as they can only convert the polarization state of an incident wave or absorb the incident energy, which would be a limitation for their applications. To make a breakthrough, a multi-functional device (MFD) is proposed in this paper, and it is capable of switching between absorption mode and polarization conversion mode. The device has a low-profile and simple structure, and it is constructed by graphene-based absorbing metasurface (AM) and gold-based polarization conversion metasurface (PCM). By controlling the chemical potential (μc) of the graphene, the leading role is transferred between the AM and the PCM, which leads to steerable absorption and polarization conversion (PC) modes. For the PC mode, the simulated polarization conversion ratio (PCR) is larger than 0.9 in the 2.11–3.63-THz band (53.0% at 2.87 THz). For the absorption mode, the simulated absorptivity is larger than 80% in the 1.59–4.54-THz band (96.4% at 3.06 THz). The physical mechanisms and operating characteristics of the MFD are discussed. This research has potential applications in terahertz imaging, sensors, photodetectors, and modulators.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment