It is well established that nearly all high-quality (Q) Fano-like resonances in terahertz (THz) metasurfaces broaden as asymmetry increases, resulting in a decline of Q-factor and an increase in the resonance intensity. Therefore, in order to determine the optimal design for applications in THz sensing, a Figure of Merit (FoM) is required. Previous studies have identified the asymmetry regimes at which the peak FoM occurs for various, specific unit cell geometries. However to date, there is no systematic comparison of the resulting FoMs for common and novel geometries. Here, a THz planar metafilm featuring split ring resonators with four distributed capacitive gaps is investigated to compare three unique methods of implementing asymmetry: (1) adjacent L-bracket translation, (2) capacitive gap translation and (3) increasing gap width. The results obtained find that by translating two gaps and increasing the bottom gap width of the unit cell, the high-Q Fano-like resonances are6× higher than the FoM for the fundamental dipole mode. This work further informs the design process for THz metasurfaces and as such will help to define their applications in photonics and sensing.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Wednesday, December 12, 2018
Abstract-Influence of symmetry breaking on Fano-like resonances in high Figure of Merit planar terahertz metafilms
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment