In recent years, there have been conflicting reports regarding the ultrafast photoconductive response of films of single walled carbon nanotubes (CNTs), which apparently exhibit photoconductivities that can differ even in sign. Here, we observe explicitly that the THz photoconductivity of CNT films is a highly variable quantity which correlates with the length of the CNTs, while the chirality distribution has little influence. Moreover, by comparing the photo-induced change in THz conductivity with heat-induced changes, we show that both occur primarily due to heat-generated modification of the Drude electron relaxation rate, resulting in a broadening of the plasmonic resonance present in finite-length metallic and doped semiconducting CNTs. This clarifies the nature of the photo-response of CNT films and demonstrates the need to carefully consider the geometry of the CNTs, specifically the length, when considering them for application in optoelectronic devices.
A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Tuesday, May 8, 2018
Abstract-Sign inversion in the terahertz photoconductivity of single-walled carbon nanotube films
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment