A repository & source of cutting edge news about emerging terahertz technology, it's commercialization & innovations in THz devices, quality & process control, medical diagnostics, security, astronomy, communications, applications in graphene, metamaterials, CMOS, compressive sensing, 3d printing, and the Internet of Nanothings. NOTHING POSTED IS INVESTMENT ADVICE! REPOSTED COPYRIGHT IS FOR EDUCATIONAL USE.
Tuesday, February 13, 2018
Abstract-Quantum theory of terahertz conductivity of semiconductor nanostructures
T. Ostatnický, V. Pushkarev, H. Němec, and P. Kužel
https://journals.aps.org/prb/accepted/77073YacS4c1dc6f966b4590831758b60bf70392b
Efficient and controlled charge carrier transport through nanoelements is currently a primordial question in the research of nanoelectronic materials and structures. We develop a quantum-mechanical theory of the conductivity spectra of confined charge carriers responding to an electric field from dc regime up to optical frequencies. The broken translation symmetry induces a broadband drift-diffusion current, which is not taken into account in the analysis based on Kubo formula and relaxation time approximation. We show that this current is required to ensure that the dc conductivity of isolated nanostructures correctly attains zero. It causes a significant reshaping of the conductivity spectra up to terahertz or multi-terahertz spectral ranges, where the electron scattering rate is typically comparable to or larger than the probing frequency.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment