Tuesday, January 2, 2018

Abstract-Terahertz spoof surface-plasmon-polariton subwavelength waveguide



Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, and Weili Zhang

https://www.osapublishing.org/prj/abstract.cfm?uri=prj-6-1-18&origin=search

Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies.
© 2017 Chinese Laser Press

No comments: