Ruoxing Wang, Li Li, Jianlong Liu, Fei Yan, Fengjun Tian, Hao Tian, Jianzhong Zhang, Weimin Sun,
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-26-32280
We report a compact triple-band tunable perfect terahertz metamaterial absorber (TMA) at the subwavelength scale of thickness, which is composed of a planar metallic disk resonator array above a conductive ground plane separated with liquid crystal (LC) mixture. The calculations of terahertz absorption spectra demonstrate triple near-unity absorption bands in the gap plasmonic resonance coupling regime. Three resonance frequencies of the absorber exhibit continuous linear-tunability as changing the refractive index of LC. Remarkably, each peak absorbance of the triple bands maintains at a level of beyond 99% in the whole tuning operation, and the absorbance can remain more than 90% over a wide range of incident angles. Our work suggests that the LC tunable absorber scheme has the potential to overcome the basic difficulty to perform simultaneously multiband spectral tuning and near-unity absorbance with wide angle of incidence and weak polarization dependence. The proposed LC-tunable multiband perfect TMA is promising in the application of biomolecular spectra-selective terahertz imaging and sensing.
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing
No comments:
Post a Comment